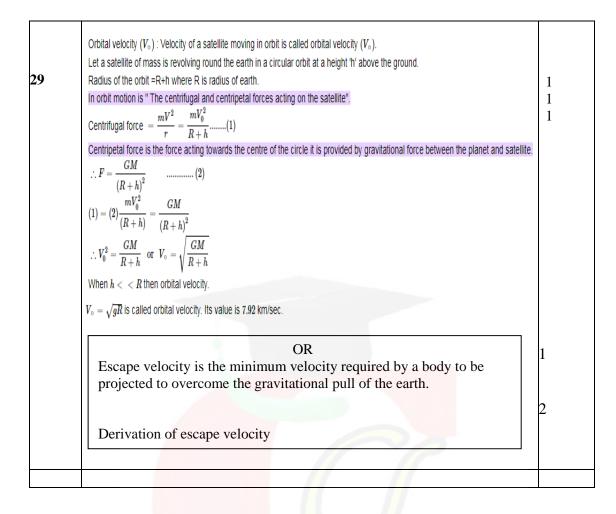
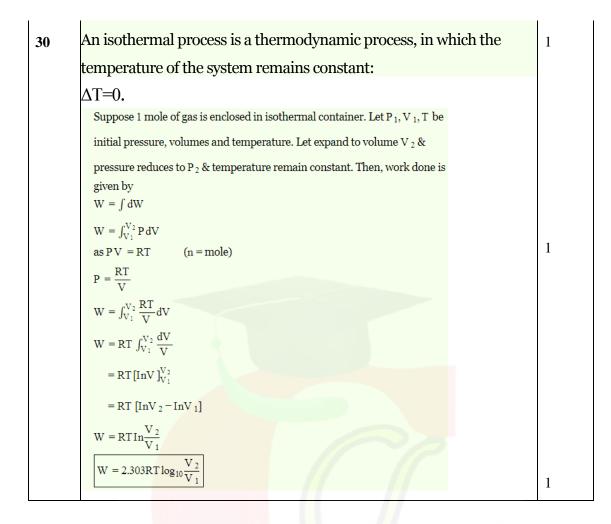
Class: XI SESSION:2023-2024 MARKING SCHEME HBSE SAMPLEQUESTIONPAPER(THEORY) SUBJECT:PHYSICS		
Q.no		Marks
	SECTIONA	
1	(iii) 8h/9	1
2	(ii) zero	1
3	(ii) 45	1
4	(iii) 7200 N	1
5	(i)Opposing force	1
6	(iv) pascal	1
7	(i) 0	1
8	(i)F	1
9	(ii) B	1
10	(iii) zero	1
11	(iv) 10 ⁷ Nm ⁻²	1
12	(iii) Hook's law	1
13	(iv) 8Q	1
14	(i)J/kg	1
15	(a)	1
16	(d)	1
17	(d)	1
18	(b)	1
	SECTIONB	
19	$P = \frac{a^{3}b^{2}}{\left(\sqrt{cd}\right)}.$ $\frac{\Delta P}{P} = \frac{3\Delta a}{a} + \frac{2\Delta b}{b} + \frac{1}{2}\frac{\Delta c}{c} + \frac{\Delta d}{d}$	1/2
	$\left(\frac{\Delta P}{P} \times 100\right)\% = \left(3 \times \frac{\Delta a}{a} \times 100 + 2 \times \frac{\Delta b}{b} \times 100 + \frac{1}{2} \times \frac{\Delta c}{c} \times 100 + \frac{\Delta d}{d} \times 100\right)\%$	1/2
	$= 3x1 + 2x3 + \frac{1}{2}x4 + 2$	1⁄2
	= 3 + 6 + 2 + 2	1⁄2
	= 13 %	
	Percentage error in $P = 13 \%$	

20

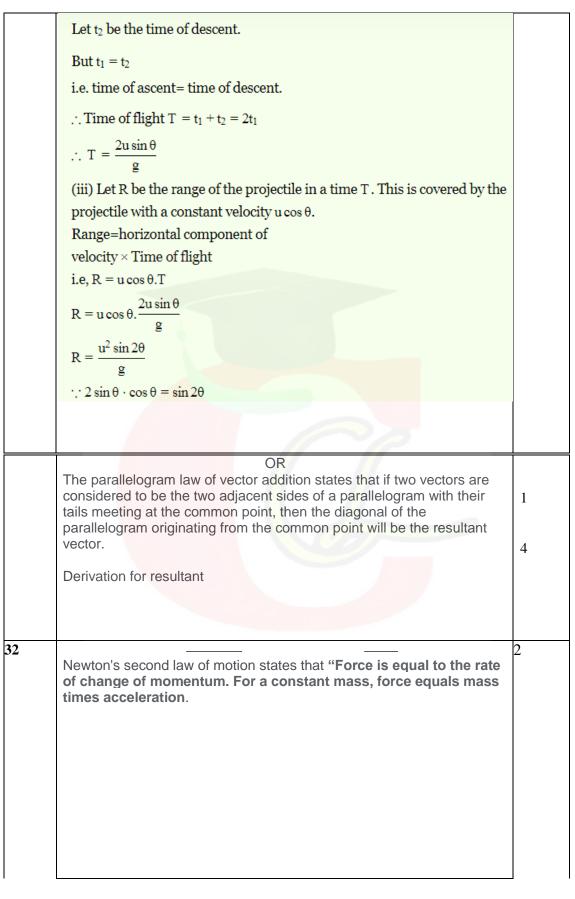
$$\frac{\text{Given unit}}{\text{New unit}} = \left(\frac{M_1}{M_2}\right)^2 \left(\frac{L_1}{L_2}\right)^2 \left(\frac{T_1}{T_2}\right)^2$$
 Image: Second sec

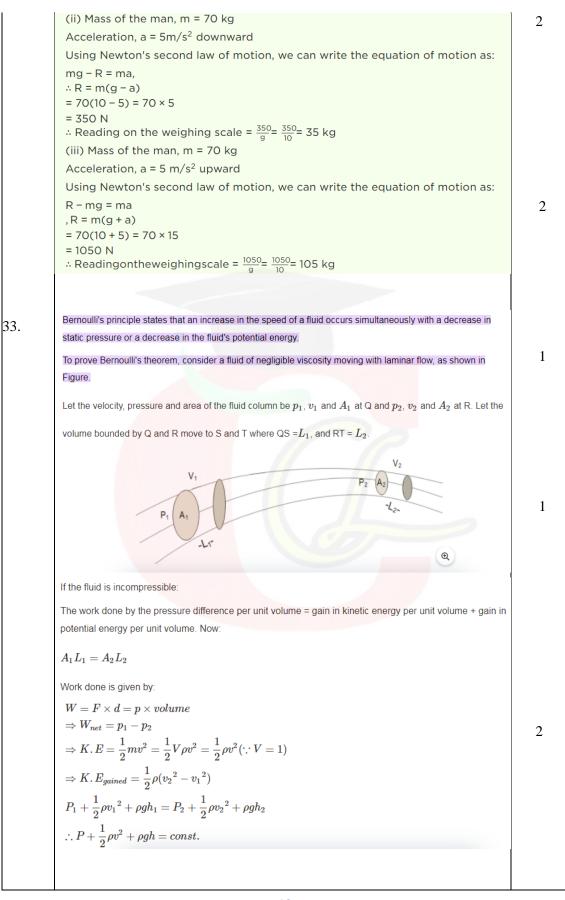

energy is called elastic collision. Characteristics: (any two)	
1. The linear momentum is conserved.	1⁄2
2. Total energy of the system is conserved.	
3. Kinetic energy is conserved.	1⁄2
4. Forces involved during elastic collisions must be	
conservative forces.	
OR	
The ratio of relative velocity after collision to the relative velocity	2
between two objects before their collision is known as the	
coefficient of restitution.	
Pascal's law is any pressure applied to a fluid inside a closed	1+1
system will transmit that pressure equally in all directions	
throughout the fluid.	
Hydraulic brake,Hydraulic jack	
As temperature levels change, so does the air pressure in your tyr <mark>es. It's the sam</mark> e as when you drive at higher speeds for an extended period: the tyre warms, and the air within expands and increases pressure	2
	 3. Kinetic energy is conserved. 4. Forces involved during elastic collisions must be conservative forces. OR The ratio of relative velocity after collision to the relative velocity between two objects before their collision is known as the coefficient of restitution. Pascal's law is any pressure applied to a fluid inside a closed system will transmit that pressure equally in all directions throughout the fluid. Hydraulic brake, Hydraulic jack As temperature levels change, so does the air pressure in your tyres. It's the same as when you drive at higher speeds for an extended period: the tyre warms, and the air

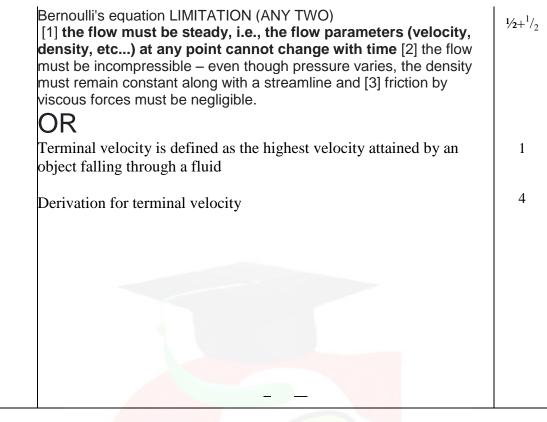

25	Length of the steel wire, $1 = 12m$	
	Mass of the steel wire, $m = 2.10 \text{kg}$	
	Velocity of the transverse wave, $v = 343 \text{m/s}$	
	Mass per unit length, μ = m/l = 2.10/12 = 0.175 kg m^{-1}	
	For Tension T, velocity of the transverse wave can be obtained using the	
	relation:	
	$v = \sqrt{\frac{T}{\mu}}$	1
	$\therefore T = v^2 \mu$	1
	$= (343)^2 \times 0.175 = 20588.575 \simeq 2.06 \times 10^4 \text{N}.$	
	SECTIONC	
26	Let $AB = s$, time takemn to go form A to B ,	1
	$t=rac{s}{40}h$	1
	and time taken to go form B to $A, t_2 = rac{s}{30}h$	
	∴ total time taken =	
	$t_1+t_2=rac{S}{40}+rac{s}{30}=rac{(3+4)s}{120}=rac{7s}{120}h$	1
	Total distance travelled $= s + s = 2s$	
	$\therefore \text{"Average speed"} = \frac{\text{total distance travelled}}{\text{total time taken}}$	1
	$=\frac{2s}{7s/120}=\frac{120\times 2}{7}=34.3km/h$	
27	Consider a system of two particles of masses m ₁ and m ₂ located at A and B	
	respectively. $\vec{OA} = \vec{r_1}$	
	and $\vec{OB} = \vec{r_2}$	1
	$r = \frac{1}{r_1^2}$	
	Let C be the position of centre of mass of the system of two particles. It would lie on the line joining A and B. Let $\vec{OC} = \vec{r}$ be the position vector of mass.	
	To evaluate $ec{r}$, suppose $ec{v_1}$ & $ec{v_2}$ be the velocities of particles m ₁ and m ₂ respectively at any instant t	
	then, $v_1 = rac{dr_1}{dt}$	
	and $v_2=rac{dv_2}{dt}.\ldots.(1)$	
	Let	

f₁ = external force on m₁ $f_2 = external force on m_2$ F_{12} = internal force of m_1 due to m_2 1 F₂₁ = internal force on m₂ due to m₁ Linear momentum of particle m₁ $\vec{p_1} = m_1 \vec{v_1} \dots \dots (2)$ According to Newton's second law total force acting on this particle which is ($\vec{f}_1 + \vec{F}_{12}$ $\frac{d\vec{p_1}}{dt} = \vec{f_1} + \vec{F}_{12}$ Using (2), $\frac{d}{dt}(m_1 \vec{v_1}) = \vec{f_1} + \vec{F_{12}}.....(3)$ $\vec{f}_1 + \vec{f}_2 = \vec{f}$(5) where \vec{f} = total external force on the system of two particles. Using (1), $\frac{\frac{d}{dt}\left[m_1\frac{d\vec{r_1}}{dt} + m_2\frac{d\vec{r_2}}{dt}\right] = \vec{f}$ $\frac{\frac{d}{dt}\left[\frac{d}{dt}(m_1\vec{r_1} + m_2\vec{r_2})\right] = \vec{f}$ 1 Or $\frac{d^2}{dt^2}\vec{r}(m_1\vec{r_1} + m_2\vec{r_2}) = \vec{f}$ Multiplying numerator and denominator of left side by $(m_1 + m_2)$, $(m_1 + m_2) \frac{d^2}{dt^2} \vec{r} \frac{(m_1 \vec{r_1} + m_2 \vec{r_2})}{(m_1 + m_2)} = \vec{f} \qquad \dots (6)$ Let us put $\frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{(m_1 + m_2)} = \vec{r} \qquad \dots (7)$ $(m_1+m_2)rac{d^2}{dt^2}ec{r}=ec{f}\dots(8)$ This is the equation of motion of total mass (m₁ + m₂) supposed to be concentrated at a point whose position of vectors is \vec{r} under the effect of total force \vec{f} . Now from (7), $(m_1 + m_2)\vec{r} = m_1\vec{r_1} + m_2\vec{r_2}$

		1.5
		1.5
28	The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). We know, kinetic energy $(E) = \frac{1}{2}mv^2$	1
	As $v = \omega r$ So $E = \frac{1}{2}mr^2\omega^2 \Rightarrow E = \frac{1}{2}I\omega^2$ [$\therefore I = mr^2$] which is required relationship between kinetic energy of rotation and moment of inertial	2







	SECTION D	
31	(i) Let H be the maximum height reached by the projectile in time t_1 For vertical motion, The initial velocity = $u \sin \theta$ The final velocity = 0	
	Acceleration = $-g$ \therefore using, $v^2 = u^2 + 2as$ $0 = u^2 \sin^2 \theta - 2gH$	1
	$2gH = u^{2} \sin^{2} \theta$ $H = \frac{u^{2} \sin^{2} \theta}{2g}$ (ii) Let t, be the time taken by the projectile to reach the maximum height H. For vertical motion, initial velocity = u sin θ Final velocity at the maximum height = 0	1
	Acceleration $a = -g$ Using the equation $v = u + at_1$ $0 = u \sin \theta - gt_1$	1
	$gt_1 = u \sin \theta$ $t_1 = \frac{u \sin \theta}{g}$	1

- ---

SECTION E		
34	 1. 1.38x10⁻²³ joule per Kelvin. P=1/3pv² 3. The law of energy equipartition states that the total energy for every dynamic system in thermal equilibrium is evenly shared among the degrees of freedom. Or Degree of Freedom 	1 1 2
35	1. b) longitudinal waves	1
	2. c) Any medium even through vacuum	1
	3. a longitudinal wave, the medium or the channel moves in the same direction with respect to the wave. Here, the movement of the particles is from left to right and forces other particles to vibrate. In a transverse wave the medium or the channel moves perpendicular to the direction of the wave.	2
	OR	
	Proof of $V = v\lambda$	