SECTION-A

1. (d) Vitamin B_{12}
2. (c) About three times
3. (b)

4. (d) 40 min
5. (b) Sorbitol
6. (a) $\mathrm{CH}_{3}-\mathrm{o}-\mathrm{NC}$
7. (d) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
8. (d) Benzyl alcohol(1)
9. (b) $\mathrm{CrO}_{4}{ }^{2-}$
10.(b) Diethyl ether
11.(a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

12.(d) Aspirin

13.(d) P-Benzoquinone
14.(c) $i_{x}=i_{y}=i_{z}$
15.(c) Assertion (A) True, Reason (R) False
16.(b) Assertion (A) True, Reason(R) True

But Reason(R) not true explanation
17.(c) Assertion (A) True, Reason (R) False
18. (d) Assertion (A) False, Reason (R) True

SECTION-B

19.(a) Aniline being lewis base react with Anhydrous AlCl_{3} which is lewis acid to form salt.
(b) Methylamine accept proton from water and liberate OH^{-}ion which combine with Fe^{3+} ion to form hydrated ferric oxide $\mathrm{Fe}(\mathrm{OH})_{3}$ or $\mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$
20. (a)

or
2,2-dimethyl propane
(b)

or 2-methyl butane

OR

(a) Because Grignard reagent reacts with moisture and form Alkane.
(b) $\mathrm{C}-\mathrm{Cl}$ bond in chloro benzene acquire some double bond character due to delocalization of ions pair on chlorine so bond length decreases OR
any other relevant answer.
21. (a) amylose is water soluble linear polymer of $\propto-\mathrm{D}$ glucose whereas amylopectin is water insoluble branched $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ glycosidic linkage carrying branched polymer.
(b) Intra molecular H-Bonding
22. Geometrical Isomers

Cis

Trans

Optical isomers

23. $Q=I x t$

$$
\begin{align*}
& =0.5 \times 4 \times 60 \times 60 \\
& =20 \times 360 \\
& =7200 \mathrm{C} \tag{1}
\end{align*}
$$

96500 corresponds to $6.02 \times 10^{23} \mathrm{e}^{-}$
$7200 \mathrm{C} \quad$ gives $=\frac{6.02 \times 10^{23}}{96500} \times 7200$
$=4.49 \times 10^{22} \mathrm{e}^{-}$
24.(a)(i) Azeotropic mixture is type of liquid mixture having definite composition and boiling like a pure liquid
eg. $95.37 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4.63 \% \mathrm{H}_{2} \mathrm{O}$
OR
Any other relevant example
(ii) Solutions which have the same osmotic pressure at same temperature ($1 / 2$)
eg. 0.9% solution of pure NaCl is isotonic with RBC
OR
Any other relevant example OR
(b) If we have two completely miscible volatile liquid A and B having mole fraction x_{A} and x_{B} Then at certain temperature partial pressures P_{A} and P_{B} and vapour pressure in pure state PA° and PB° are expressed as
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \cdot \mathrm{x}_{\mathrm{A}}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}{ }^{\circ} \cdot \mathrm{X}_{\mathrm{B}}$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \cdot \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \cdot \mathrm{X}_{\mathrm{B}}$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ}\left(1-\mathrm{X}_{\mathrm{B}}\right)+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}$
when $\mathrm{x}_{\mathrm{A}}=1 \quad \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \cdot \mathrm{x}_{\mathrm{A}}$
when $\mathrm{X}_{\mathrm{B}}=1 \quad \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}$

$\mathrm{y}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{T}}} \quad \mathrm{y}_{\mathrm{B}}=1-\mathrm{y}_{\mathrm{A}}$
25.(i) Ea decrease
(ii) No effect on ΔG

SECTION-C

26. (a) It is the amide linkage present between -COOH group of one \propto amino acid and NH_{2} group of other amino acid.
(b) When protein in native form is subjected to physical changes like change in temperature or pH then hydrogen bonds are broken, it looses its biological activity and all structures are destroyed and only primary structure remain intact.
(c) It is the sequence in which various \propto-amino acids present in a protein are linked to one another.

OR
Amino acids contain acidic and basic group within same molecule. In aqueous solution they neutralize each other, carboxyl group loses a proton and amino group accept it.

(Zwitter ion)

$\mathrm{NH}_{3}{ }^{+}$group
act as acid

Amphoteric
react with acid and base
COO^{-}group act as base

27.(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

28.(a) $1^{\text {st }}$ order
(b) min^{-1}
(c) $\mathrm{t}^{1 / 2}=\frac{0.693}{K}$
29. For AB_{2}

$$
\begin{align*}
\mathrm{M}_{\mathrm{AB}_{2}} & =\frac{K f . W_{B .1000}}{W_{A} \cdot \Delta T f} \tag{1/2}\\
& =\frac{5.1 \times 1 \times 1000}{20 \times 2.3} \\
& =110.87 \mathrm{u} \tag{1/2}\\
\mathrm{M}_{\mathrm{AB}_{4}} & =\frac{5.1 \times 1 \times 1000}{20 \times 1.3} \\
& =196.5 \mathrm{u}
\end{align*}
$$

Atomic mass of $\mathrm{A}=\mathrm{a}$ and Atomic mass of B is b

$$
\begin{align*}
& \therefore a+2 b=110.87 \\
& a+4 b=19.65 \tag{1}\\
& \text { (ii) }- \text { (i) } \\
& 196.5-110.87=a+46-a-2 b \\
& 85.28=2 b \\
& \quad b=42.64 \mathrm{u}
\end{align*}
$$

$$
\begin{aligned}
& a+2 b=110.87 \\
& a+2 \times 42.64=110.87 \\
& \therefore a=110.8 \rightarrow-8528 \\
& \quad=25.29 u
\end{aligned}
$$

i.e. atomic mass of $\mathrm{A}=25.59 \mathrm{u}$ atomic mass of $B=42.64 u$
30.(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{N} \mathrm{NHCONH} 2$
(b)

4- Oxocyclohexane
 Carboxylate anion

(c)

OR
(a) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO}$

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
(b)

(c)

31.(a) The difference of energy between the two sets of a orbitals is called as crystal field splitting energy.
(b)

OR
$\mathrm{Mn}^{2+}=4 \mathrm{~s}^{\circ} 3 \mathrm{~d}^{5}$
$\mathrm{H}_{2} \mathrm{O}$ being weak ligand, don't cause pairing 5 unpaired e
$\therefore \mathrm{t}_{2} \mathrm{~g}^{3} \mathrm{eg}^{2}$
CN^{-}strong ligand, cause pairing so there is 1 unpaired e^{-}
i.e. $\mathrm{t}_{2} \mathrm{~g}^{5} \mathrm{eg}^{\circ}$
(c) $\Delta_{\mathrm{O}}>\mathrm{P}$ pairing occurs
$\Delta_{\mathrm{o}}<\mathrm{P}$ No pairing occurs
32. (a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClC}_{6} \mathrm{H}_{5}$
(b) 1-Bromo pentane >2-Bromopentane >2-Bromo-2-methylbutane
(c) Allylic carbocation is stable
(d) I^{-}is better leaving group than Cl^{-}

OR
(d)

Allylic substitution
33.(a) (i) $4 \mathrm{FeOCr}_{2} \mathrm{O}_{3}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}$
(ii) $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(Conc)
(iii) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl}$
(b) (i) $\mathrm{Cr}_{2} \mathrm{O}^{2-}{ }_{7}+14 \mathrm{H}^{+}+6 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}^{2-}{ }_{7}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

OR
(a)(i) $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KMnO}_{4}+2 \mathrm{KCl}$

OR
any other relevant answer.
(b) Lanthanoids

Actinoids
(i) Electronic Configuration

$$
\begin{equation*}
[\mathrm{xe}] 4 \mathrm{f}^{1-14} 5 \mathrm{~d}^{0-1} 6 \mathrm{~s}^{2} \quad[\mathrm{Rn}] 5 \mathrm{f}^{1-14} \quad 6 \mathrm{~d}^{0-1} 7 \mathrm{~s}^{2} \tag{1}
\end{equation*}
$$

(ii) Regular decrease in size from left to right known as lanthanoid contraction

Regular decrease in
(iii) \Rightarrow Lanthanoids react with dilute acid to liberate H_{2} gas
\Rightarrow Form oxide and hydroxides of type $\mathrm{M}_{2} \mathrm{O}_{3} / \mathrm{M}(\mathrm{OH})_{3}$
\Rightarrow With C form carbides
\Rightarrow With halogen form halides
\Rightarrow Actinoids are
highly reactive in divided state
\Rightarrow React with boiling water
to give mixture of oxide and hydride
\Rightarrow Attacked by HCl but the effect of HNO_{3} is very small. \Rightarrow No action of alkalies

OR

any other relevant difference
34. (a) E° cell $=\mathrm{E}^{\circ}$ cathode $-\mathrm{E}^{\circ}$ Anode

$$
=\mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}-\mathrm{E}^{\circ} \mathrm{Mg}^{2+} / \mathrm{Mg}
$$

$$
=0.34-(-2.36)
$$

$$
=2.70 \mathrm{~V}
$$

$\mathrm{Mg}_{(\mathrm{s})}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}_{(\mathrm{s})}$
$(0.0001 \mathrm{M}) \quad(0.001 \mathrm{M})$
Ecell $=\mathrm{E}^{\circ}$ cell $-\frac{0.0591}{2} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}$
$=2.70-\frac{0.0591}{2} \log \frac{0.001]}{0.0001}$
$=2.70-0.0295 \log 10$
$=2.70-0.0295 \times 1$
$=2.6705 \mathrm{~V}$
(b) Because the number of ions per unit volume decreases.

OR

(a) (i) During recharging, cell is operated like electrolytic cell.
(ii) Electrical energy is supplied to it from external source.
(iii) Electrode reactions are reverse of that of discharging.
(iv) At cathode (Reduction)
$\mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
At Anode (oxidation)
$\mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Overall reaction
$2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}(\mathrm{aq})^{+}+2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
(b) $\mathrm{E}^{\circ} \mathrm{Zn}^{2+} / \mathrm{Zn}=-0.76 \mathrm{~V}$
$\mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V}$
$\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$\underset{\text { oxid }}{\mathrm{Zn}(\mathrm{s})+\stackrel{\text { Red }}{\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\stackrel{\rightharpoonup}{\mathrm{C}}} \mathrm{Cu}(\mathrm{s})}$
E° cell $=0.34-(-0.76)$

$$
=1.10 \mathrm{~V}
$$

(c) E° cell + ve means reaction is spontaneous and in this reaction zinc is oxidised \therefore we can't store CuSO_{4} in zinc pot.
35. (a)

(b)

(c)

(d) $\mathrm{HCHO}+\mathrm{HCHO} \xrightarrow[\mathrm{NaOH}]{\text { conc }} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOONa}$
(e)

OR
(a) Phenol gives violet colouration with neutral FeCl_{3} solution but benzoic acid does not.
OR
any other relevant test
(b) Acetaldehyde is more reactive towards nucleophillic addition reaction because of stearic hindrance in acetone.
(c)

2-Ethyl benzaldehyde

2,4 DNP

