|          | Marking Schem                                                           | ne IX Mat                    | hs 2023-24       | 4 (हिन्दी) म     | ाध्यम)       |       |
|----------|-------------------------------------------------------------------------|------------------------------|------------------|------------------|--------------|-------|
| Q.NO.    | EXP                                                                     |                              | WER /VALUE       | POINTS           |              | MARKS |
|          |                                                                         |                              | CTION-A          |                  |              |       |
| 1        | दो परिमेय संख्याओं के                                                   | ज् <b>बी</b> च               |                  |                  |              |       |
| SOLUTION | (C) अपरिमित रूप से                                                      | अनेक परिमेय                  | संख्याएँ हैं     |                  |              | 1     |
|          | एक त्रिभुज के कोणों व                                                   | न अनुपात 2                   | : 4 : 3 है। त्रि | भुज का सबसे      | छोटा कोण     |       |
| 2        | <b>ह</b>                                                                |                              |                  |                  |              |       |
| SOLUTION | (B) 40°                                                                 |                              |                  |                  |              | 1     |
| 3        | निम्न में से कौन त्रिभु                                                 | जों की सर्वांग               | समता की कसौट     | ी नहीं है?       |              |       |
| SOLUTION | (C) SSA                                                                 |                              |                  |                  |              | 1     |
|          | एक त्रिभुज की दो भुज                                                    | ाओं की लंबाई                 | 5 सेमी और 1      | .5 सेमी है। त्रि | भुज की       |       |
| 4        | तीसरी भुजा की लंबाई                                                     | नहीं हो सकत                  | <del>ग</del> ि   |                  |              |       |
| SOLUTION | (D) 3.4 cm                                                              |                              |                  |                  |              | 1     |
| 5        | एक चतुर्भुज के तीन व                                                    | <mark>होण 75°</mark> , 90° ३ | और 75° हैं। चौथ  | ा कोण है         |              |       |
| SOLUTION | D) 120°                                                                 |                              |                  |                  |              | 1     |
|          | एक वृत्त की समान जीवाएँ केंद्र पर समान कोण बनाती (या सर्वांगसम वृत्तों) |                              |                  |                  |              |       |
| 6.       | ) <del>E</del> T/F)                                                     |                              |                  |                  |              |       |
| SOLUTION | Т                                                                       |                              |                  |                  |              | 1     |
|          | एक समकोण त्रिभुज व                                                      | न आधार 8 र                   | ोमी और कर्ण 1    | 0 सेमी है। इस    | का क्षेत्रफल |       |
|          | होगा                                                                    |                              |                  |                  |              |       |
| 7.       |                                                                         |                              |                  |                  |              |       |
| SOLUTION | (A) 24 cm <sup>2</sup>                                                  |                              |                  |                  |              |       |
|          | एक शंकु में, यदि त्रिज्य                                                | ग आधी कर व                   | दी जाए और ऊंच    | गई दोगुनी कर     | दी जाए, तो   |       |
| 8.       | आयतन होगा                                                               |                              |                  |                  |              |       |
| SOLUTION | C) आधा                                                                  |                              |                  |                  |              | 1     |
| 9.       | वर्ग 130-150 का वर्ग                                                    | -चिह्न है                    |                  |                  |              |       |
| SOLUTION | (C) 140                                                                 |                              |                  |                  |              | 1     |
|          | बारंबारता बंटन                                                          |                              |                  |                  |              |       |
|          | वर्ग अन्तराल                                                            | 5-10                         | 10-15            | 15-25            | 25-45        |       |
|          | बारंबारता                                                               | 6                            | 12               | 10               | 8            |       |
| 10.      | का एक आयत चित्र खं                                                      | ोंचने के लिए,                | वर्ग 25-45 की    | समायोजित बा      | रंबारता है:  |       |
| SOLUTION | (D) 2                                                                   |                              |                  |                  |              | 1     |

| 11.      | सबसे छोटी प्राकृत संख्या है                                                                        |   |
|----------|----------------------------------------------------------------------------------------------------|---|
| SOLUTION | (B) 1                                                                                              | 1 |
| 12.      | $2 - x^2 + x^3$ में $x^2$ का गुणांक होगा                                                           |   |
| SOLUTION | (A) -1                                                                                             | 1 |
|          | $x = 0$ पर बहपद $5x - 4x^2 + 3$ का मान ज्ञात कीजिए                                                 |   |
| 13.      | 3                                                                                                  |   |
| SOLUTION | (D) $3$<br>एक शंकु का कुल पृष्ठीय क्षेत्रफल ,जिसकी त्रिज्या $\frac{r}{2}$ और तिर्यक ऊंचाई $2l$ है, |   |
|          |                                                                                                    |   |
| 14.      | होगा:                                                                                              |   |
| SOLUTION | (B) $\pi r (l + \frac{r}{4})$                                                                      |   |
| 15.      | त्रिभुज ABC में, BC = AB और ∠B=80° है, तब ∠A बराबर है:                                             |   |
| SOLUTION | (C) 50°                                                                                            | 1 |
| 16.      | चतुर्भुज के सभी आंतरिक कोणों का योग है                                                             |   |
| SOLUTION | $360^{0}$                                                                                          | 1 |
|          | ABCD एक चक्रीय चतुर्भुज है जिसमें AB इसके परिगत वृत्त का व्यास है और                               |   |
|          | ∠ADC=140°, तो ∠BAC बराबर है:                                                                       |   |
| 17.      | (D) 500                                                                                            |   |
| SOLUTION | (B) 50°  एक ही वृत्तखंड में बने कोणहोते हैं ।                                                      | 1 |
| 18.      | -                                                                                                  |   |
| SOLUTION | बराबर                                                                                              | 1 |
|          | अभिकथन <mark>(A) अगर √2=1.4</mark> 14 , √3 =1.732 फिर √5=√2+√3                                     |   |
|          | तर्क(R) धनात्मक (positive number) संख्या का वर्ग मूल हमेशा मौजूद होता                              |   |
|          | है                                                                                                 |   |
| 19.      | e e                                                                                                |   |
|          | D) A असत्य है लेकिन R सत्य है                                                                      |   |
| SOLUTION |                                                                                                    | 1 |
|          | अभिकथन (A) किसी वृत्त की जीवा, जो उसकी त्रिज्या से दोगुनी लंबी होती है,                            |   |
|          | वृत्त का व्यास होती है।                                                                            |   |
| 20.      | तर्क (R) किसी वृत्त की सबसे लंबी जीवा वृत्त का व्यास होती है                                       |   |
| 20.      | A) A और R दोनों सत्य हैं और R, A की सही व्याख्या है।                                               |   |
| SOLUTION |                                                                                                    | 1 |
|          | SECTION -B                                                                                         |   |
|          |                                                                                                    |   |

| 21       | 3 और 4 के बीच छह परिमेय संख्याएँ ज्ञात कीजिए।                                        |   |
|----------|--------------------------------------------------------------------------------------|---|
| 21       |                                                                                      |   |
|          | हम जानते हैं कि                                                                      |   |
| SOLUTION | $3=3 \times \frac{7}{7} = \frac{21}{7}$ 3117 $4=4 \times \frac{7}{7} = \frac{28}{7}$ | 1 |
|          | इसलिए, 3 और 4 के बीच छह परिमेय संख्याएँ  22 23 24 7, 25 26 7, 7                      | 1 |
| 22.      | सरल कीजिए (3 + √3 )(2 + √ 2)                                                         | 1 |
| 22.      | $= 3 (2 + \sqrt{2}) + \sqrt{3} (2 + \sqrt{2})$                                       |   |
| SOLUTION |                                                                                      | 1 |
|          | $= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$                                             | 1 |
|          | OR                                                                                   |   |
|          | सरल कीजिये : $(125)^{\frac{-1}{3}}$                                                  |   |
|          |                                                                                      |   |
| SOLUTION | $(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$ | 1 |
|          | $= 5^{-1} = \frac{1}{5}$                                                             | 1 |
| 23.      | 1/(2+√3) के <mark>हर का परिमेयक</mark> रण कीजिये                                     |   |
|          | $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$                          |   |
|          | $=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}$                                             |   |
| SOLUTION |                                                                                      | 1 |
|          | $=\frac{2-\sqrt{3}}{4-3}$                                                            |   |
|          | $=\frac{2-\sqrt{3}}{1}$                                                              |   |
|          | -                                                                                    | 1 |
| 24.      | 103 × 107 का मान ज्ञात कीजिए                                                         |   |
|          | 103×107= (100+3)×(100+7)                                                             |   |
|          | यहाँ, $x = 100$ , $a = 3$ , $b = 7$                                                  |   |
| SOLUTION | सर्वसमिका, $[(x+a)(x+b) = x^2 + (a+b)x + ab$ द्वारा                                  | 1 |

|          | $103 \times 107 = (100 + 3) \times (100 + 7)$                                                              |   |
|----------|------------------------------------------------------------------------------------------------------------|---|
|          | $(100)^2 + (2 + 7)100 + (2 + 7)$                                                                           |   |
|          | $= (100)^2 + (3+7)100 + (3\times7)$<br>= 10000+1000+21                                                     |   |
|          | = 10000+1000+21<br>= 110211                                                                                | 1 |
| 25.      | k का मान ज्ञात कीजिए, यदि $x - 1$ , $p(x)$ का एक गुणनखंड है $p(x) = x^2 + x + k$                           |   |
|          | यदि $x - 1, p(x)$ का एक गुणनखंड है तो                                                                      |   |
|          | p(1) = 0                                                                                                   |   |
|          | गुणनखंड प्रमेय द्वारा                                                                                      |   |
| SOLUTION | $\Rightarrow (1)^2 + (1) + k = 0$                                                                          | 1 |
|          | 1+1+k=0                                                                                                    |   |
|          | $\Rightarrow$ 2+k = 0                                                                                      |   |
|          | $\Rightarrow k = -2$ <b>OR</b>                                                                             | 1 |
|          | गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए कि $x-3$ , बहुपद $x^3-4x^2+x+6$ का                                |   |
|          | जुनाविक प्रमय या अनुवार्ग परिपार सारा प्राणिश विर ४-७, बहुनप् ४ -४४ न्४न वर्ग                              |   |
|          | एक गुणनखंड है या नहीं ?                                                                                    |   |
|          | x-3 =0 लेने पर                                                                                             |   |
|          | x = 3                                                                                                      |   |
| SOLUTION | x=3 बह्पद में रखने पर (3) <sup>3</sup> -4(3) <sup>2</sup> +3+6                                             | 1 |
|          | = 27-36+3+6= 0                                                                                             |   |
|          | अतः ग्णन <mark>खंड प्रमेय द्वारा x</mark> -3, बहुपद x <sup>3</sup> -4x <sup>2</sup> +x+6 का एक ग्णनखंड है। | 1 |
|          | SECTION-C                                                                                                  |   |
|          | गुणनखण्ड कीजिए 12 <i>x</i> <sup>2</sup> – 7 <i>x</i> + 1                                                   |   |
| 26.      | 3                                                                                                          |   |
|          | मध्य पद को विभाजित करने की विधि का उपयोग करते हुए,                                                         |   |
|          | हमें एक संख्या ज्ञात करनी है जिसका योग = -7 है                                                             |   |
|          | और ग्णनफल =1×12 = 12                                                                                       |   |
|          | हमें संख्या के रूप में -3 और -4 मिलते हैं [-3+-4=-7 और -3×-4 = 12]                                         |   |
|          | $12x^2-7x+1$                                                                                               |   |
| SOLUTION | $=12x^2-4x-3x+1$                                                                                           | 1 |
|          | =4x(3x-1)-1(3x-1)                                                                                          | 4 |
|          | = (4x-1)(3x-1)                                                                                             | 1 |
|          | एक अर्द्धगोलीय कटोरे की त्रिज्या 3.5 सेमी है। इसमें पानी की मात्रा कितनी                                   |   |
| 27       | होगी?                                                                                                      |   |
| 27.      | V                                                                                                          |   |

|          | R = 3.5 CM                                                             |     |
|----------|------------------------------------------------------------------------|-----|
|          | गोले का आयतन =4/3(ПR <sup>3</sup> )                                    |     |
|          | 2007                                                                   | 1   |
|          | अर्धगोले का आयतन =2/3(ПR <sup>3</sup> )                                |     |
|          | =(2/3)x3.14x3.5x3.5x3.5<br>=89.75 सेमी <sup>3</sup>                    | 1   |
|          | =89.75 समा                                                             | 1   |
| SOLUTION | OP                                                                     |     |
|          | OR                                                                     |     |
|          | एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, यदि इसकी तिर्यक ऊँचाई 21 |     |
|          | मीटर है और इसके आधार का व्यास 24 मीटर है।                              |     |
|          | शंक् की तिर्यक ऊंचाई (I)=21 मी                                         |     |
|          | शंकु के आधार का व्यास =24 मी                                           |     |
| SOLUTION | त्रिज्या (r)=24/2=12 मीटर                                              | 1   |
| SOLUTION | क्ल पृष्ठीय क्षेत्रफल =πr(l+r)=22/7×12(21+12)मी <sup>2</sup>           | 1   |
|          | 3.77 ( 014 414 17.1 7.1 (111) - 227 7.12 (21.12) 411                   | 1   |
|          | =22/7×12×33 मी2=8712/7मी2=1244.57 मी <sup>2</sup>                      | 1   |
| 28.      | ग्णनखण्ड <mark> कीजिए 27Y³ +</mark> 125Z³                              |     |
| 20.      | $27Y^3 + 125Z^3 = (3Y)^3 + (5Z)^3$                                     |     |
|          | हम जानते हे की, $x^3+y^3=(x+y)(x^2-xy+y^2)$                            |     |
|          | $=27Y^3+125Z^3$                                                        |     |
|          | $(3Y)^3 + (5Z)^3$                                                      |     |
| SOLUTION | $=(3y)^3+(5z)^3$                                                       | 1   |
|          | $= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2]$                                    |     |
|          | $= (3Y+5Z)(9Y^2-15YZ+25Z^2)$                                           | 2   |
| 29       | समीकरण $x + 2y = 6$ के चार भिन्न हल ज्ञात कीजिए।                       |     |
|          | x + 2y = 6 $X = 6 - 2Y$                                                |     |
|          | Y=0 रखने पर                                                            |     |
|          | X=6                                                                    |     |
|          | पहला हल (X=6, Y=0)                                                     |     |
|          | Y=1 रखने पर                                                            |     |
|          | X=6-2x1                                                                |     |
|          | X=4                                                                    |     |
|          | दूसरा हल (X=4,Y=1)                                                     | 1.5 |
|          | Y=2 रखने पर                                                            |     |
|          | । 1=2 रखन पर                                                           | 1.5 |

|          | X=6-2x2                                                                                                         |   |
|----------|-----------------------------------------------------------------------------------------------------------------|---|
|          | X=2                                                                                                             |   |
|          | तीसरा हल (X=2,Y=2)                                                                                              |   |
|          | Y=3 रखने पर                                                                                                     |   |
|          | X=6-2x3                                                                                                         |   |
|          | X=0                                                                                                             |   |
|          | चौथा हल (X=0,Y=3)                                                                                               |   |
|          | ${\bf k}$ का मान ज्ञात कीजिए, यदि ${\bf x}={\bf 2},{\bf y}={\bf 1}$ समीकरण ${\bf 2x}+{\bf 3y}={\bf k}$ का एक हल |   |
| 30       | है।                                                                                                             |   |
|          | 2x + 3y = k.                                                                                                    |   |
|          | x=2, y=1 समीकरण में रखने पर                                                                                     |   |
| SOLUTION | 2x2+3x1=K                                                                                                       | 2 |
|          | 4+3=K                                                                                                           |   |
|          | K=7                                                                                                             | 1 |
| 31.      | गुणनखण्ड कीजिए 8X <sup>3</sup> + 27Y <sup>3</sup> + 36X <sup>2</sup> Y + 54XY <sup>2</sup>                      |   |
|          | व्यंजक $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$                                                                         |   |
|          | के रूप में लिखा जा सकता है                                                                                      |   |
| SOLUTION | $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$                                                                   | 1 |
|          |                                                                                                                 |   |
|          | $=(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$                                                                  |   |
|          | $(x+y)^3 = x^3 + y^3 + 3xy (x+y)$ $(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$                                        | 1 |
|          | $(2X)^{2} + (3Y)^{2} + 3(2X)(3Y)(2X + 3Y)$                                                                      |   |
|          | $=(2X+3Y)^3$                                                                                                    |   |
|          | =(2X+3Y)(2X+3Y)(2X+3Y)                                                                                          | 1 |
|          | अथवा                                                                                                            |   |
|          | गुणनखण्ड कीजिए 8X <sup>3</sup> + Y <sup>3</sup> + 27Z <sup>3</sup> – 18XYZ                                      |   |
|          | $8X^3 + Y^3 + 27Z^3 - 18XYZ$                                                                                    |   |
|          | के रूप में लिखा जा सकता है                                                                                      |   |
|          | $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$                                                                          |   |
| SOLUTION | $(2\Delta) + 1 + (3L) - 3(2\Delta)(1)(3L)$                                                                      | 1 |
|          | $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$                              | 1 |
|          |                                                                                                                 |   |
|          | $= (2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$                                                               | 1 |
|          | (35), 51, 377) (45), 52, 577, 577, 577, 577, 577, 577, 577,                                                     |   |
|          | $(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$                                                                          |   |
|          |                                                                                                                 |   |
| L        | 1                                                                                                               |   |

|          | यदि एक बिंदु $C$ दो बिंदुओं $A$ और $B$ के बीच इस प्रकार स्थित है कि $AC$ =                                                                       |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          | BC है, तो सिद्ध कीजिए AC = 1/2 AB चित्र बनाकर समझाइए।                                                                                            |   |
| 32.      |                                                                                                                                                  |   |
|          | AB                                                                                                                                               |   |
| SOLUTION |                                                                                                                                                  | 1 |
|          | दिया गया है कि , AC = BC                                                                                                                         |   |
|          | अब दोनों तरफ AC को जोड़ रहे हैं                                                                                                                  |   |
|          | L.H.S+AC = R.H.S+AC                                                                                                                              | 2 |
|          | AC+AC = BC+AC                                                                                                                                    | _ |
|          | 2AC = BC+AC                                                                                                                                      |   |
|          | हम जानते हैं कि, BC+AC = AB (क्योंकि यह रेखाखंड AB के साथ संपाती है)<br>: 2 AC = AB (यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।) |   |
|          | $\Rightarrow AC = (\frac{1}{2}) AB.$                                                                                                             |   |
|          | / Tie = (/2) TiB:                                                                                                                                | 2 |
|          | चित्र में रेखाएँ XY और MN O पर प्रतिच्छेद करती हैं। यदि ∠POY = 90° और                                                                            |   |
|          | a:b=2:3 है, तो c ज्ञात कीजिए।                                                                                                                    |   |
| 33.      | M b a v v v v v v v v v v v v v v v v v v                                                                                                        |   |
|          | हम जानते <mark>हैं कि रैखिक युग्</mark> मों का योग हमेशा 180° के बराबर होता है                                                                   |   |
|          | इसलिए, ∠POY +a +b = 180°                                                                                                                         |   |
| SOLUTON  |                                                                                                                                                  | 1 |
|          | ***                                                                                                                                              |   |
|          | जैसा कि प्रश्न में दिया गया है $\angle POY = 90^{\circ}$ का मान रखने पर, $a+b=90^{\circ}$                                                        |   |
|          | a+b = 90                                                                                                                                         |   |
|          | दिया ह्आ है : a:b=2:3                                                                                                                            | 1 |
|          | मान लीजिए a =2x है और b =3x है                                                                                                                   |   |
|          | $\therefore 2x + 3x = 90^{\circ}$                                                                                                                |   |
|          | इसे हल करने पर हमें प्राप्त होता है                                                                                                              |   |
|          | $5x = 90^{\circ}$                                                                                                                                |   |
|          | So, $x = 18^{\circ}$                                                                                                                             | 1 |
|          | $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$                                                                                                |   |
|          | इसी प्रकार, b की गणना की जा सकती है और मान होगा                                                                                                  | 1 |

|          | $b = 3 \times 18^{\circ} = 54^{\circ}$                                  |   |
|----------|-------------------------------------------------------------------------|---|
|          | आरेख से, b+c भी एक सीधा कोण बनाता है,                                   |   |
|          | इसलिए, b+c = 180°                                                       |   |
|          | $c+54^{\circ} = 180^{\circ}$                                            |   |
|          | $\dot{\cdot} c = 126^{\circ}$                                           | 1 |
|          | चित्र में यदि AB    CD, ∠APQ = 50° और ∠PRD = 127°, x और y ज्ञात         | 1 |
|          | कीजिए।                                                                  |   |
|          | A P B 50° y 127°                                                        |   |
|          | C O R D                                                                 |   |
|          | C Q K B                                                                 |   |
| OR 33    |                                                                         |   |
|          | चित्र से $\angle APQ = \angle PQR$ (अंतः एकांतर कोण)                    |   |
|          | ∠APQ = 50° और <b>∠</b> PQR = x का मान रखने पर                           |   |
|          | $x = 50^{\circ}$                                                        |   |
| SOLUTION |                                                                         | 1 |
|          | <b></b>                                                                 |   |
|          | ∠APR = ∠PRD (अंतःएकांतर कोण)                                            |   |
|          | Or, ∠APR = 127° (जैसा कि दिया गया है कि ∠PRD = 127°)                    |   |
|          | हम वह जान <mark>ते हैं ∠APR =∠A</mark> PQ+∠QPR                          | 2 |
|          | अब, ∠QPR = <mark>y और ∠APR = 12</mark> 7° का मान रखने पर,               |   |
|          | हम पाते हैं                                                             |   |
|          | $127^{\circ} = 50^{\circ} + y$                                          |   |
|          | Or, y = 77°<br>इस प्रकार, x और y के मानों की गणना इस प्रकार की जाती है: |   |
|          |                                                                         |   |
|          | x = 50° और y = 77°                                                      | 2 |
|          | एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 सेमी और 10 सेमी  |   |
| 24       | हैं तथा परिमाप 42 सेमी है।                                              |   |
| 34.      | V V II AVEIL III VIII VI                                                |   |
|          | त्रिभ्ज की तीसरी भ्जा को "x" मान लें।                                   |   |
|          | अब, त्रिभुज की तीन भुजाएँ 18 सेमी, 10 सेमी और "x" सेमी हैं              |   |
|          | दिया गया है कि त्रिभुज का परिमाप = 42 सेमी                              |   |
| COLUTION | इसलिए, x = 42-(18+10) सेमी = 14 सेमी                                    |   |
| SOLUTION | Z 7 12 (25 25) X 2. X                                                   |   |

|          | त्रिभुज का अर्ध परिमाप = 42/2 = 21 सेमी                                          | 1 |
|----------|----------------------------------------------------------------------------------|---|
|          | हीरोन के सूत्र का प्रयोग करने पर,                                                | 4 |
|          | त्रिभ्ज का क्षेत्रफल= $\sqrt{s(s-a)(s-b)(s-c)}$                                  | ı |
|          |                                                                                  |   |
|          | (504/04-40)/04-44)]                                                              |   |
|          | = √[21(21-18)(21-10)(21-14)] सेमी²                                               |   |
|          | = √[21×3×11×7] सेमी²                                                             | 1 |
|          | - [21^3^11^7] (1011                                                              | 1 |
|          | = 21√11 सेमी²                                                                    | ' |
|          |                                                                                  |   |
|          | एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए जिसकी तिर्यक ऊँचाई 10 |   |
| 34 OR    | सेमी और आधार की त्रिज्या 7 सेमी है।                                              |   |
|          | दिया गया है : /=10 सेमी ,त्रिज्या r = 7 सेमी                                     |   |
|          | ादया गया ह : 7=10 समा ,135या १ – ७ समा                                           | 1 |
|          |                                                                                  |   |
|          |                                                                                  | 1 |
|          | लम्बवृत्तीय <mark>शंकु का वक्र पृष्ठी</mark> य क्षेत्रफल = $\pi r l$             | 1 |
|          | = 22/7x7×10                                                                      | 2 |
|          | = 220 सेमी <sup>2</sup>                                                          | 1 |
| SOLUTION |                                                                                  |   |
| SOLUTION |                                                                                  |   |
|          | चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए                   |   |
|          | कि ΔABC ΔABD. आप BC और BD के बारे में क्या कह सकते हैं?                          |   |
|          | C                                                                                |   |
|          |                                                                                  |   |
|          |                                                                                  |   |
|          |                                                                                  |   |
|          | $A \longrightarrow B$                                                            |   |
|          |                                                                                  |   |
|          | × /                                                                              |   |
|          |                                                                                  |   |
| 35.      | D                                                                                |   |
|          | दिया गया है : AC = AD और रेखाखंड AB , ∠A को समद्विभाजित करती है।                 |   |
| SOLUTION | सिद्ध करना है : $\Delta ABC \cong \Delta ABD$                                    | 2 |
| •        |                                                                                  | - |

|          | प्रमाण:                                                                                       |   |
|----------|-----------------------------------------------------------------------------------------------|---|
|          | त्रिभुजों ΔABC और ΔABD में                                                                    |   |
|          | (i) AC = AD ( दिया गया है)                                                                    |   |
|          | (ii) AB = AB (उभयनिष्ठ)                                                                       |   |
|          | (iii) ∠CAB = ∠DAB (क्योंकि AB कोण A का समद्विभाजक है)                                         |   |
|          | इसलिए, $\Delta ABC\cong \Delta ABD$ . (SAS सर्वांगसमता कसौटी के अनुसार)                       | 2 |
|          | प्रश्न के दूसरे भाग के लिए, BC =BD हैं। (C.P.C.T के नियम के अनुसार)                           | 1 |
|          | विज्ञापन के लिए फ्लाईओवर की त्रिकोणीय साइड की दीवारों का उपयोग                                |   |
|          | किया गया है। दीवारों की भुजाएँ 122 मीटर, 22 मीटर और 120 मीटर हैं।                             |   |
|          | विज्ञापनों से प्रति वर्ष 5000 रुपये प्रति m² की कमाई होती है। उपरोक्त                         |   |
|          | जानकारी और दी गई आकृति के आधार पर निम्नलिखित प्रश्नों का उत्तर दें                            |   |
|          | (i) दीवार का परिमाप ज्ञात कीजिए I                                                             |   |
|          | (ii) हीरोन <mark>का सूत्र लिखिए।</mark>                                                       |   |
|          | (iii) त्रिभु <mark>जाकार दीवार का</mark> क्षेत्रफल ज्ञात कीजिए l                              |   |
|          | अथवा                                                                                          |   |
|          | यदि कंप <mark>नी 1680 वर्ग मीटर</mark> क्षेत्रफल वाली एक दीवार को 3 महीने के लिए              |   |
|          | किराए पर लेती है, तो उसे कितना किराया देना होगा?                                              |   |
| 36.      |                                                                                               |   |
|          | (i) त्रिभुज ABC <mark>की भुजाएँ क्रमशः</mark> 122 मीटर, 22 मीट <mark>र और</mark> 120 मीटर हैं |   |
|          | अब, परिमाप (122+22+120) = 264 मीटर होगा                                                       |   |
| SOLUTION |                                                                                               | 1 |
|          | (ii) $\Delta$ का क्षे $0 = \sqrt{s(s-a)(s-b)(s-c)}$ जहाँ $s = (a+b+c)/2$                      | 2 |
|          | (i) अर्द्ध परिमाप (s) = 264/2 = 132 मी.                                                       |   |
|          | हीरोन के सूत्र का प्रयोग करने पर,                                                             |   |
|          | त्रिभुज का क्षेत्रफल = $\sqrt{s(s-a)(s-b)(s-c)}$                                              |   |
|          | $=\sqrt{132(132-122)(132-22)(132-120)}$                                                       |   |
|          | $=\sqrt{132\times10\times110\times12}$                                                        |   |
|          | $=1320 \text{ m}^2$                                                                           | 2 |
|          | OR                                                                                            | 2 |

|          | हम जानते हैं कि प्रति वर्ष विज्ञापन का किराया = 5000 प्रति वर्ग मीटर        |   |
|----------|-----------------------------------------------------------------------------|---|
|          | ं एक दीवार का 3 महीने का किराया = रु. (1680×5000×3)/12                      |   |
|          | = ₹. 2100000                                                                |   |
|          | आकृति देखकर निम्नलिखित प्रश्नों के उत्तर दें।                               |   |
|          | (i) B के निर्देशांक।                                                        |   |
|          | (ii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु।                           |   |
|          | (iii) बिंदु D का भुज तथा बिंदु H की कोटि ज्ञात कीजिए ।                      |   |
|          | अथवा                                                                        |   |
|          | आकृति में रेखाखंड BD का X-अक्ष के साथ बनने वाले आयत का क्षेत्रफल            |   |
| 37.      | ज्ञात कीजिए ।                                                               |   |
| SOLUTION | В का निर्देशांक (−5, 2) है।                                                 | 1 |
| Bozerion | निर्देशांक (-3, -5) द्वारा पहचाना गया बिंद् E है।                           |   |
|          | 3                                                                           | 1 |
|          | बिंदु D का भुज 6 तथा बिंदु H की कोटि -3 है।                                 | 2 |
|          | OR                                                                          |   |
|          | आयत का क्षेत्रफल= लo × चौo= 11×2=22 वर्ग इकाई                               | 2 |
|          | कक्षा IX के एक विशेष खंड में, 40 छात्रों से उनके जन्म के महीनों के बारे में |   |
|          | पूछा गया था और प्राप्त आंकड़ों के लिए निम्नलिखित ग्राफ तैयार किया गया       |   |
|          | था। दिए गए दंड आलेख को देखें और निम्नलिखित प्रश्नों के उत्तर दें:           |   |
|          | <b>1</b>                                                                    |   |
|          | ↑ 7 <del> </del>                                                            |   |
|          | 6                                                                           |   |
|          | <u> </u>                                                                    |   |
|          | PR 4                                                                        |   |
|          | Number of Students                                                          |   |
|          | 호 2 †                                                                       |   |
|          |                                                                             |   |
|          | ,                                                                           |   |
|          | Jan. July July Aug. Oct. Dec.                                               |   |
|          | Months of Birth>                                                            |   |
| 38.      | (i) नवंबर के महीने में कितने विद्यार्थियों का जन्म हुआ?                     |   |

|          | (ii) किस महीने में सबसे अधिक विद्यार्थियों का जन्म हुआ?                            |      |
|----------|------------------------------------------------------------------------------------|------|
|          | (iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ।                   |      |
|          | अथवा                                                                               |      |
|          | मई से अगस्त के बीच पैदा हुए छात्रों की कुल संख्या ज्ञात कीजिए।                     |      |
|          |                                                                                    |      |
| SOLUTION | (i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था                                    | 1    |
|          | (ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ                                 | 1    |
|          | (iii) फरवरी, अक्टूबर, नवंबर,   दिसंबर                                              |      |
|          |                                                                                    | 2    |
|          | OR                                                                                 |      |
|          | मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र                                      |      |
|          | नइ स जगस्त तक कुल छात्र – 5+1+2+0 – 14 छात्र                                       |      |
|          |                                                                                    | 2    |
|          |                                                                                    |      |
|          |                                                                                    |      |
|          | Marking Scheme IX Maths 2023-24 (English Medium)                                   |      |
| Q.NO.    | EXPECTED ANSWER /VALUE POINTS                                                      | MARK |
|          |                                                                                    | S    |
|          | SECTION -A                                                                         |      |
| 1        | Between two rational numbers                                                       |      |
| SOLUTION | (C) there are infinitely many rational numbers                                     | 1    |
| 2        | Angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is |      |
| SOLUTION | (B) 40°                                                                            | 1    |
| 3        | Which of the following is not a criterion for congruence of                        | 1    |
|          | triangles?                                                                         |      |
| SOLUTION | (C) SSA                                                                            |      |
| 4        | Two sides of a triangle are of lengths 5 cm and 1.5 cm. The                        | 1    |
|          | length of the third side of the triangle cannot be                                 |      |
| SOLUTION | (D) 3.4 cm                                                                         |      |
| 5        | Three angles of a quadrilateral are 75°, 90° and 75°. The fourth                   |      |
|          | angle is                                                                           |      |
| SOLUTION | D) 120°                                                                            | 1    |

| 6           | Equal chords of a                                                       | · ·                    | of congrue         | nt circles) su               | btend equal      |   |
|-------------|-------------------------------------------------------------------------|------------------------|--------------------|------------------------------|------------------|---|
| SOLUTION    | angles at the centre                                                    | e (1/F)                | TDITE              |                              |                  | 1 |
| 7           | TRUE  The base of a right triangle is 8 cm and hypotenuse is 10 cm. Its |                        |                    | 1                            |                  |   |
| ,           | area will be                                                            | t triangle             | is o cili alic     | i nypotenuse                 | is to cill. Its  |   |
| SOLUTION    | (A) 24 cm2                                                              |                        |                    |                              |                  | 1 |
| 8           | In a cone, if radius                                                    | is halved              | and height         | is doubled,                  | the volume       |   |
|             | will be                                                                 |                        | 8                  | ,                            |                  |   |
| SOLUTION    | (C) halved                                                              |                        |                    |                              |                  | 1 |
| 9           | The class-mark of                                                       | the class 1            | 130-150 is :       |                              |                  |   |
| SOLUTION    | (C) 140                                                                 |                        |                    |                              |                  | 1 |
| 10          | To draw a histogradistribution:                                         | ım to repi             | resent the f       | ollowing freq                | uency            |   |
|             | Class Interval                                                          | 5-10                   | 10-15              | 15-25                        | 25-45            |   |
|             | Frequency                                                               | 6                      | 12                 | 10                           | 8                |   |
|             | The adjusted frequ                                                      | iency for              | the class 25       | -45 is:                      |                  |   |
| SOLUTION    | (D) 2                                                                   |                        |                    |                              |                  | 1 |
| 11          | The smallest natur                                                      | <mark>al nu</mark> mbe | r is:              |                              |                  |   |
| SOLUTION    | (B) 1                                                                   |                        |                    | 2                            |                  | 1 |
| 12          | The coefficients of                                                     | $\mathbf{X}^2$ in 2    | $2 - X^2 + X^3$    |                              |                  |   |
| SOLUTION    | (A) -1                                                                  |                        |                    |                              |                  | 1 |
| 13          | Find the value of                                                       | the polyn              | omial 5            | $X-4X^2+3$ a                 | $\mathbf{x} = 0$ |   |
| SOLUTION    | (D) 3                                                                   |                        |                    |                              |                  | 1 |
| 14          | The total surface a                                                     | area of a c            | cone whose         | radius is $\frac{r}{2}$ and  | nd slant         |   |
|             | height 2 <i>l</i> is:                                                   |                        |                    | 2                            |                  |   |
| SOLUTION    | (B) $\pi r(l + \frac{r}{4})$                                            |                        |                    |                              |                  | 1 |
| 15          | In triangle ABC, l                                                      | BC = AB                | and $\angle B = 8$ | $30^{\circ}$ . Then ∠ $A$    | is equal to:     |   |
| SOLUTION    | (C) 50°                                                                 |                        |                    |                              |                  | 1 |
| 16          | sum of all the inte                                                     | riors angl             | e of quadri        | lateral is                   |                  |   |
| SOLUTION    | 360°                                                                    |                        |                    |                              |                  |   |
| 17          | ABCD is a cyclic q                                                      | uadrilate              | ral such tha       | at AB is a dia               | meter of a       |   |
|             | circle circumscribi                                                     | ng it and              | $\angle ADC = 1$   | <b>40°</b> , then ∠ <i>B</i> | AC is equal      |   |
| COLUTION    | to:                                                                     |                        |                    |                              |                  | 1 |
| SOLUTION 18 | (B) 50°                                                                 |                        | a.C. a 1           |                              |                  | 1 |
| 18          | Angles in the same                                                      | segment                | oi a circle a      | are                          | ••••             |   |

| SOLUTION | equal                                                                                         | 1 |
|----------|-----------------------------------------------------------------------------------------------|---|
| 19       | <b>Assertion</b> (A) if $\sqrt{2}=1.414$ , $\sqrt{3}=1.732$ then $\sqrt{5}=\sqrt{2}+\sqrt{3}$ |   |
|          | Reason (R) Square root of positive number always exists.                                      |   |
| SOLUTION | A is false but R is true                                                                      | 1 |
| 20       | Assertion (A) A chord of a circle, which is twice as long as its                              |   |
|          | radius, is a diameter of the circle.                                                          |   |
|          | Reason (R) The longest chord of a circle is a diameter of the                                 |   |
|          | circle                                                                                        |   |
| SOLUTION | Both A and R are true and R is the correct explanation of A.                                  | 1 |
|          |                                                                                               |   |
|          |                                                                                               |   |

## SECTION -B

| Q.NO.    | EXPECTED ANSWER /VALUE POINTS                                                                                                    | MARKS |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-------|
| 21       | Find six rational numbers between 3 and 4.                                                                                       |       |
|          | We know that $3= 3 \times \frac{7}{7} = \frac{21}{7}$ , $4= 4 \times \frac{7}{7} = \frac{28}{7}$                                 |       |
| SOLUTION |                                                                                                                                  | 1     |
|          | Hence, six rational numbers between 3 and 4 $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$ | 1     |
| 22       | Simplify $(3 + \sqrt{3})(2 + \sqrt{2})$                                                                                          |       |
| SOLUTION | $= (3 (2 + \sqrt{2})) + (\sqrt{3} (2 + \sqrt{2}))$                                                                               | 1     |
|          | $= 6 + 3\sqrt{2 + 2}\sqrt{3 + \sqrt{6}}$                                                                                         | 1     |
|          | OR                                                                                                                               |       |
|          | Simplify: $(125)^{\frac{-1}{3}}$                                                                                                 |       |
| SOLUTION | $(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$                                             | 1     |
|          | $=5^{-1}=\frac{1}{5}$                                                                                                            | 1     |
|          | Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$                                                                            |       |
| 23       |                                                                                                                                  |       |
| SOLUTION | $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2)2-(\sqrt{3})2}$                                | 1     |

|           | $2-\sqrt{3}$ $2-\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           | $=\frac{2-\sqrt{3}}{4-3} = \frac{2-\sqrt{3}}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 |
|           | <b>Evaluate</b> 103 × 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 |
| 24        | Evaluate 103 × 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|           | 103×107= (100+3)×(100+7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|           | Here, $x = 100$ , $a = 3$ , $b = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| COLLITION | Using identity, $[(x+a)(x+b) = x^2 + (a+b)x + ab$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
| SOLUTION  | We get, $103 \times 107 = (100+3) \times (100+7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
|           | $= (100)^2 + (3+7)100 + (3\times7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|           | = 10000+1000+21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | = 110211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |
|           | Find the value of k, if $x - 1$ is a factor of $p(x)$ , $p(x) = x^2 + x + k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | If x-1 is a factor of $p(x)$ , then $p(1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|           | By Factor Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| SOLUTION  | $\Rightarrow (1)^2 + (1) + k = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
|           | 1+1+k=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|           | $\Rightarrow 2+k=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|           | $\Rightarrow$ k = -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
|           | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|           | Use the Factor Theorem to determine whether x-3 is a factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|           | of polynomial $x^3-4x^2+x+6$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|           | Polymont in the contract of th |   |
|           | Take x-3 =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|           | $\Rightarrow x = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| SOLUTION  | putting $x=3$ in given polynomial $(3)^3-4(3)^2+3+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
|           | = 27-36+3+6= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|           | Therefore by factor theorem x-3 is a factor of polynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|           | $x^3-4x^2+x+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
|           | SECTION -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|           | <b>Factorise:</b> $12x^2 - 7x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 26        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | Using the splitting the middle term method,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|           | We have to find a number whose sum $= -7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| SOLUTION  | and product $=1 \times 12 = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |

|          | We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12]$            |   |
|----------|------------------------------------------------------------------------------------|---|
|          | $12x^2-7x+1$                                                                       |   |
|          | $= 12x^2 - 4x - 3x + 1$                                                            |   |
|          |                                                                                    |   |
|          | =4x(3x-1)-1(3x-1)                                                                  |   |
|          | =4x(3x-1)-1(3x-1)                                                                  | 1 |
|          | =(4x-1)(3x-1)                                                                      | 1 |
|          | A hemispherical bowl has a radius of 3.5 cm. What would be                         | _ |
|          | the volume of water it would contain?                                              |   |
| 27       |                                                                                    |   |
|          | R=3.5 cm                                                                           |   |
| SOLUTION | Volume of hemisphere = $2/3(\Pi R^3)$                                              | 1 |
|          | =(2/3)x3.14x3.5x3.5x3.5                                                            | 1 |
|          | $=89.75 \text{ cm}^3$                                                              | 1 |
|          | OR                                                                                 |   |
|          | Find the Total surface area of a cone, if its slant height is 21 m                 |   |
|          | and diameter of its base is 24 m.                                                  |   |
|          |                                                                                    |   |
|          | Slant height of a cone (1)=21 m                                                    |   |
|          | diameter of its base =24 m                                                         |   |
|          | Radius (r)= $\frac{24}{2}$ =12 m                                                   |   |
| SOLUTION | 2                                                                                  | 1 |
|          | Now total surface area= $\pi$ r(1+r)=22/7×12(21+12)m <sup>2</sup>                  |   |
|          | 110w total surface area 1/11/1/22/1/12(21+12)III                                   | 1 |
|          | 22/7 12 22 2 2712/7 2 1244 57 2                                                    | 1 |
|          | $=22/7 \times 12 \times 33 \text{ m}^2 = 8712/7 \text{ m}^2 = 1244.57 \text{ m}^2$ | 1 |
| 28       | Factorise 27Y <sup>3</sup> + 125Z <sup>3</sup>                                     |   |
|          | $27Y^3 + 125Z^3$                                                                   |   |
|          | The expression, $27Y^3+125Z^3$ can be written as $(3Y)^3+(5Z)^3$                   |   |
|          |                                                                                    | 1 |
|          | $27Y^3 + 125Z^3 = (3Y)^3 + (5Z)^3$                                                 | 1 |
|          | We know that, $x^3+y^3 = (x+y)(x^2-xy+y^2)$                                        |   |
|          | $= 27Y^3 + 125Z^3$                                                                 |   |
|          | $= (3y)^3 + (5z)^3$                                                                | 1 |
|          | $= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2$                                                 |   |
|          | $= (3Y+5Z)((3Y)-(3Y)+(3Z)+(3Z)$ $= (3Y+5Z)(9Y^2-15YZ+25Z^2)$                       |   |
|          |                                                                                    | 1 |
|          | Find four different solutions of the equation $x + 2y = 6$ .                       |   |
| 29       |                                                                                    |   |
|          | x + 2y = 6                                                                         |   |
| SOLUTION | X=6-2Y                                                                             | 2 |

|          |                                                                            | 1 |
|----------|----------------------------------------------------------------------------|---|
|          | PUT Y=0                                                                    |   |
|          | X=6                                                                        |   |
|          | $1^{ST}$ SOLUTION (X=6, Y=0)                                               |   |
|          | PUT Y=1                                                                    |   |
|          | $X=6-2\times1$                                                             |   |
|          | X=4                                                                        |   |
|          | $2^{ND}$ SOLUTION (X=4,Y=1)                                                |   |
|          | PUT Y=2                                                                    |   |
|          | $X=6-2\times 2$                                                            |   |
|          | X=2                                                                        |   |
|          | $3^{RD}$ SOLUTION (X=2,Y=2)                                                |   |
|          | PUT Y=3                                                                    |   |
|          | $X=6-2\times3$                                                             |   |
|          | X=0                                                                        |   |
|          | $4^{\text{TH}}$ SOLUTION (X=0,Y=3)                                         |   |
|          | 4 SOLUTION (X=0, Y=3)                                                      | 1 |
|          | Find the value of h if n 2 n 1 is a solution of the equation               |   |
|          | Find the value of $k$ , if $x = 2$ , $y = 1$ is a solution of the equation |   |
| 20       | 2x + 3y = k.                                                               |   |
| 30       | 2n+2n-k                                                                    |   |
|          | 2x + 3y = k.                                                               |   |
|          |                                                                            |   |
|          |                                                                            |   |
|          | x = 2, y = 1                                                               |   |
|          | $2\times2+3\times1=K$                                                      |   |
| SOLUTION | 4.0.1/                                                                     | 2 |
|          | 4+3=K                                                                      |   |
|          | K=7                                                                        | 1 |
|          | Factorise $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$                                 |   |
| 31       |                                                                            |   |
|          | The expression, $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$                           |   |
| SOLUTION | can be written as $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$            | 1 |
|          |                                                                            |   |
|          | $=(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$                             |   |
|          | $(x+y)^3 = x^3 + y^3 + 3xy (x + y)$                                        | 1 |
|          | $=(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$                                    | 1 |
|          | $=(2X+3Y)^3$                                                               |   |
|          | =(2X+3Y)(2X+3Y)(2X+3Y)                                                     | 1 |
|          | OR                                                                         |   |
| 31       | <b>Factorise</b> $8X^3 + Y^3 + 27Z^3 - 18XYZ$                              |   |
|          | The expression $8X^3 + Y^3 + 27Z^3 - 18XYZ$                                |   |
|          | Can be written as $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$                   |   |
| SOLUTION |                                                                            | 1 |
| DOLUTION | 1                                                                          | 1 |

|          | $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|          | $=(2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | $(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |
|          | (2X+1+3L)(4X+1+3L-2X1-31L-0LX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |
|          | and the state of t |   |
|          | SECTION-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|          | If a point C lies between two points A and B such that AC =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|          | BC, then prove that $AC = \frac{1}{2}AB$ . Explain by drawing the fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 32       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | Č.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|          | A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| SOLUTION | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
| BOLCTION | Given that, $AC = BC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | Now, adding AC both sides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|          | L.H.S+AC = R.H.S+AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |
|          | AC+AC = BC+AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|          | 2AC = BC + AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|          | We know that, $BC+AC = AB$ (as it coincides with line segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|          | AB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|          | , and the second |   |
|          | $\therefore$ 2 AC = AB (If equals are added to equals, the wholes are equal.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|          | $\Rightarrow$ AC = $(\frac{1}{2})$ AB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |
|          | In Fig. lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and $a : $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | b=2:3,  find $c.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | ₽ ÎP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|          | M a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|          | X O Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 33       | N a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| JJ       | We know that the sum of linear pair are always equal to 180°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          | So, $\angle POY + a + b = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| SOLUTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|          | Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|          | $get, a+b = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|          | Now, it is given that $a:b=2:3$ so,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|          | 1 NOW, It is given that $a \cdot b = 2 \cdot 3$ so,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |

|          | Let a be 2x and b be 3x                                                          |   |
|----------|----------------------------------------------------------------------------------|---|
|          | $2x + 3x = 90^{\circ}$                                                           |   |
|          | Solving this we get                                                              |   |
|          | $5x = 90^{\circ}$                                                                |   |
|          | So, $x = 18^{\circ}$                                                             |   |
|          | 50, X = 10                                                                       | 1 |
|          | $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$                                | 1 |
|          | Similarly, b can be calculated and the value will be                             |   |
|          | $b = 3 \times 18^{\circ} = 54^{\circ}$                                           |   |
|          | 0-3/10 -34                                                                       | 1 |
|          | From the diagram by a also forms a straight angle so                             | 1 |
|          | From the diagram, b+c also forms a straight angle so,                            |   |
|          | $b+c = 180^{\circ}$                                                              |   |
|          | $c+54^{\circ} = 180^{\circ}$                                                     |   |
|          | $\therefore c = 126^{\circ}$                                                     |   |
|          |                                                                                  | 1 |
|          | In Fig. if AB    CD, $\angle$ APQ = 50° and $\angle$ PRD = 127°, find x and      |   |
|          | <i>y</i> .                                                                       |   |
|          |                                                                                  |   |
|          | A D                                                                              |   |
|          | $\stackrel{A}{\longleftrightarrow}$ $\stackrel{P}{\longleftrightarrow}$          |   |
|          | 50°                                                                              |   |
|          | y                                                                                |   |
|          | 127°                                                                             |   |
|          | x                                                                                |   |
|          | C Q R D                                                                          |   |
| 33 OR    |                                                                                  |   |
|          |                                                                                  |   |
|          | From the diagram,                                                                |   |
|          | $\angle APQ = \angle PQR$ (Alternate interior angles)                            |   |
|          | Now, putting the value of $\angle APQ = 50^{\circ}$ and $\angle PQR = x$ we get, |   |
|          | $x = 50^{\circ}$                                                                 |   |
| SOLUTION |                                                                                  | 1 |
|          | Also,                                                                            |   |
|          | $\angle APR = \angle PRD$ (Alternate interior angles)                            |   |
|          | Or, $\angle APR = 127^{\circ}$ (As it is given that $\angle PRD = 127^{\circ}$ ) |   |
|          | We know that $\angle APR = \angle APQ + \angle QPR$                              |   |
|          |                                                                                  | 2 |
|          | Now, putting values of $\angle QPR = y$ and $\angle APR = 127^{\circ}$ we get,   |   |
|          | $127^{\circ} = 50^{\circ} + y$                                                   |   |
|          | Or, $y = 77^{\circ}$                                                             |   |
|          | Thus, the values of x and y are calculated as:                                   |   |
|          | $x = 50^{\circ}$ and $y = 77^{\circ}$                                            | 2 |
|          | in the many in                                                                   |   |

|          | Find the area of a triangle two sides of which are 18cm and                  |   |
|----------|------------------------------------------------------------------------------|---|
| 34       | 10cm and the perimeter is 42cm.                                              |   |
| 34       | Assume the third side of the triangle to be "x".                             |   |
|          | Now, the three sides of the triangle are 18 cm, 10 cm, and "x" cm            |   |
|          | It is given that the perimeter of the triangle = 42cm                        |   |
|          |                                                                              |   |
|          | So, $x = 42-(18+10)$ cm = 14 cm                                              | 4 |
| SOLUTION | . TI                                                                         | 1 |
|          | $\therefore$ The semi perimeter of triangle = $42/2 = 21$ cm                 |   |
|          | Using Heron's formula,                                                       |   |
|          | Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$                             |   |
|          |                                                                              |   |
|          |                                                                              | 2 |
|          | $= \sqrt{[21(21-18)(21-10)(21-14)]} \text{ cm}2$                             |   |
|          |                                                                              | 1 |
|          | $= \sqrt{21 \times 3 \times 11 \times 7} \text{ m}$                          | _ |
|          |                                                                              |   |
|          | $=21\sqrt{11} \text{ cm}^2$                                                  | 1 |
|          |                                                                              |   |
|          | Find the curved surface area of a right circular cone whose                  |   |
|          | slant height is 10 cm and base radius is 7 cm                                |   |
| 34 OR    |                                                                              |   |
|          | Given that $l=10$ cm                                                         |   |
|          | Radius $r=7 \text{ cm}$                                                      |   |
|          |                                                                              | 1 |
| SOLUTION |                                                                              |   |
|          |                                                                              |   |
|          | curved surface area of a right circular cone is = $\pi r l$                  | 1 |
|          |                                                                              | _ |
|          | $C.S = 22/7x7 \times 10$                                                     | 1 |
|          | = 220 cm2                                                                    | 2 |
|          | In quadrilateral ACBD, $AC = AD$ and $AB$ bisects $\angle A$ . Show          |   |
| 35       | that $\triangle ABC \cong \triangle ABD$ . What can you say about BC and BD? |   |

|          | $\begin{array}{c} C \\ \\ D \end{array}$                                                                                                                                                                                                                                                                                                                                |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SOLUTION | It is given that AC and AD are equal i.e. $AC = AD$ and the line segment AB bisects $\angle A$ .  We will have to now prove that the two triangles ABC and ABD are congruent i.e. $\triangle ABC \cong \triangle ABD$                                                                                                                                                   | 2 |
|          | <b>Proof:</b> Consider the triangles $\triangle ABC$ and $\triangle ABD$ ,<br>(i) $AC = AD$ (It is given in the question)<br>(ii) $AB = AB$ (Common)<br>(iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A)<br>$\triangle ABC \cong \triangle ABD$ (by <b>SAS congruency criterion</b> )                                                              |   |
|          | For the 2nd part of the question, BC = BD (by C.P.C.T.)  SECTION -E                                                                                                                                                                                                                                                                                                     | 1 |
|          | 122m 22m 120m                                                                                                                                                                                                                                                                                                                                                           |   |
| 36       | The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisement yields an earning of Rs 5000 per m² per year. Based on the above information and the given figure answer the followings  (i) Perimeter of wall is  (ii) Write down the Heron's Formula.  (iii) Area of triangular wall is |   |

|          | OR If company hired one of its walls with area 1680 m² for 3 months, then how much rent did it pay?                                                                                                                                                 |   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SOLUTION | (i) The sides of the triangle ABC are 122 m, 22 m and 120 m resp.<br>Now, the perimeter will be (122+22+120) = 264 m                                                                                                                                | 1 |
|          | (ii) Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = (a+b+c)/2$                                                                                                                                                                               | 1 |
|          | (iii) the semi perimeter (s) = 264/2 = 132 m<br>Using Heron's formula,                                                                                                                                                                              |   |
|          | Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$                                                                                                                                                                                                    |   |
|          | $=\sqrt{132(132-122)(132-22)(132-120)}$                                                                                                                                                                                                             |   |
|          | $=\sqrt{132 \times 10 \times 110 \times 12} = 1320 \text{ m}^2$                                                                                                                                                                                     | 2 |
|          | OR                                                                                                                                                                                                                                                  |   |
|          | We know that the rent of advertising per year $= 5000 \text{ per m}^2$                                                                                                                                                                              |   |
|          | ∴ The rent of one wall for 3 months = Rs. $(1680 \times 5000 \times 3)/12$                                                                                                                                                                          |   |
|          | = Rs 2100000.                                                                                                                                                                                                                                       | 2 |
|          | $X' \leftarrow \begin{array}{c} X \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                           |   |
|          | See Fig and write the following:  (i) The coordinates of B.  (ii) The point identified by the coordinates (-3, -5).  (iii) Find the abscissa of point D and the ordinate of point H.  OR  Find the area of the rectangle formed by the line segment |   |
| 37       | BD and the X-axis in the figure.                                                                                                                                                                                                                    |   |
| SOLUTION | (i) The co-ordinates of B (-5, 2).                                                                                                                                                                                                                  | 1 |
|          | (ii) The point identified by the coordinates $(-3, -5)$ is E.                                                                                                                                                                                       | 1 |
|          | (iii) abscissa of the point D is 6 and ordinate of point H is -3.                                                                                                                                                                                   | 2 |

