Model Question Paper

Rol	l No		(Session-20	20-21)	(10+1) Class
			Chemis	stry)	
Tot	al no	o. of question s : 2	.8		
Tin	ie Al	llowed: 3 hrs		Max	kimum Marks : 60
Spe	cial l	Instructions:-			
(i)	You	must indicate on y	your answer	book the san	ne question no. as ap
	pear	rs in your questi <mark>on</mark>	paper.		
(ii)	All	question <mark>s are c</mark> omp	ulsory. Intern	al choices ha	<mark>ve been</mark> given in som
	que	stions.			
(iii)	Q. 1	No. 7,13,15,19,26	(a) and 27 (a	a,c) are base	d on PISA format.
(iv)	Mai	rks allotted to each	question are	indicated ag	ainst each.
1.	Αjυ	ng contains 2L of m	ilk. The valu	e of milk <mark>in</mark> n	n^3 is:
	(a)	20m³	(b)	$2 \times 10^{-2} \mathrm{m}^3$	
	(c)	$2 \times 10^{-3} \text{ m}^3$	(d)	$2m^3$	
2.	The	total number of no	odes for a 3d	orbital are	1
	(a)	1	(b)	2	
	(c)	3	(d)	0	
3.	The	shape of a molecule	is square plan	nar, the hybrid	lisation involved is 1
	(a)	sp³ hybridization	(b)	sp2 hybridiz	ation
	(c)	dsp ² hybridization	(d)	sp³ d² hybrid	disation
4.	The	energy of an insula	ated system is	S	1
	(a)	infinite	(b)	depends up	on surroundings
	(c)	zero	(d)	constant	
			1		

5.	Aci	dic solution has an pH.			1
	(a)	greater than 7 (> 7)	(b)	less than $7 (< 7)$	
	(c)	exactly 7	(d)	7.3	
6.	An	oxidising agent is a/an			1
	(a)	acceptor of electron (s)	(b)	donor of electron (s)	
	(c)	both a and b	(d)	none of these	
7.	A si	ingle bond is always a 'σ' t	ond	where as multiple bonds conta	ins
	botl	h σ and π bonds. A double	e bon	d contains one σ and one π bo	ond
	whe	ereas a triple bond contains	one	σ and 2 π bonds. On basis of t	his
	state	ement calculate σ and π bo	onds	in HC≡C−CH=CH−CH	₃ 1
	(a)	$\sigma = 10, \ \pi = 2$	(b)	$\sigma = 8, \ \pi = 3$	
	(c)	$\sigma = 2, \ \pi = 3$	(d)	$\sigma = 10, \ \pi = 3$	
8.	The	strongest reduing agent am	ong	alkali metals is	1
	(a)	Li	(b)	Na	
	(c)	Cs	(d)	K	
9.	The	reaction			1
	CH	$_3$ – CH = CH ₂ + HBr $_{\sim}$ (C)	₅ H ₅ Co	$O_2 O_2 \longrightarrow CH_3 - CH_2 - CH_2$ Br is	an
	exar	mple of			1
	(a)	Markovnikov rule	(b)	anti Markovnikov rule	
	(c)	Friedel craft acylation	(d)	Friedel craft alkylation	
0.	The	most serious water pollutants	are c	lisease causing agents called	1
	(a)	pathogens	(b)	smog	
	(c)	acid rain	(d)	carcinogenics	
1.	Calo	culate amount of water in ((g) pi	roduced by combustion of 16g	of
	metl	nane.			2

-	٦		
	1	٠.	

				Ol	
	Cal	culate the mo	olarity	of NaOH in the solution prepared by dissol	ving
	its 4	g in enough	water	to form 250 ml of the solution.	2
12.	Exp	olain line spec	etrum	of hydrogen atom using Bohr's model.	2
				Or	
	Ac	ertain partic	le carr	ies $.5 \times 10^{-16}$ c of static electric charge. Ca	ılcu
				as present in it.	
13.					
		Column I		Column II	
	(a)	BF_3	(i)	Trigonal bipyramidal	
	(b)	CH ₄	(ii)	Octahedral	
				Trigonal planar	
	(d)	SF ₆	(iv)	Tetrahedral	
14.	Exp	lain the shap	e of H	O molecule on basis of VSEPR theory.	2
15.	The	relation betv	veen d	ensity and molar mass of a gaseous substan	ce is
	$\int =$	$=\frac{PM}{RT}$, wher	e ∫ is	density of subtance P is pressure of gase	eous
				mass, R is gas constant (= 8.3 J mol ⁻¹ K ⁻¹)	
				what is the density of H_2 gas at 27°C and 24	
		ressure.		28	2
6.	Exp	lain Dalton's	law o	f partial pressures	2
				Or	
	Deri	ive Ideal gas	equati	on.	2
7.	Deri	ive a relation	betwe	een Cp and Cv for an ideal gas.	2
8.				equilibrium using a general reversible reaction	. 2
		$B \rightleftharpoons C + I$			
		, 1 -		3	

Or

	Tl	he folloiwing concentrations were obtained for the formation of	NILI
	fro	om N_2 and H_2 at equilibrium at 500K.	2
	[N	$J_2] = 1.5 \times 10^{-2} \text{ M}, [H_2] = 3.0 \times 10^{-2} \text{ M}$	2
		$JH_3] = 1.2 \times 10^{-2} \text{ M}.$	
		alculate the value of equilibrium constant.	
19	. In	methyl carbocation $\begin{pmatrix} + \\ CH_3 \end{pmatrix}$, the carbon is positively charged an	nd is
	sp ²	hybridised. Thus the shape of C+H ₃ may be considered as be	einσ
	dei	rived from overlap of three equivalent sp ² hybridised orbitals.	On
	bas	sis of above statement draw the shape of methyl carbocation.	2
20.	W	ny do <mark>es the solubility o</mark> f alkaline earth metal carbonates and sulph	atec
	in v	water decrease down the group?	2
21.		What is the lowest value of 'n' that allows 'g' orbital to exist	71
	(b)	Describe effect of addition of H ₂ on equilibrium of reaction.	1
		$2H_2(g) + CO(g) \rightleftharpoons CH_3 OH(g)$	
	(c)	For an isolated system, $\Delta \bigcup = 0$, What will be ΔS ?	1
		Or	
	(a)	An electron is in one of the 3d orbitals. Give all possible value	e of
		n, l, m_{ℓ} for this electron.	1
	(b)	Define enthalpy of dilution.	1
	(c)	What do you mean by conjugate acid base pair?	1
22.	(a)	What is periodicity? Explain cause of periodicity.	2
	(b)	Define ionic radius.	1
			-

1

		Or	
	(a)	site of eather is smaller than the size of	oarent
		atom.	2
	(b)	Write IUPAC name of the element with atomic number 11	3. 1
23	. (a)	Berryllium and magnesium do not give colour to flame wh	ere as
		other alkaline earth metals do so, why?	2
	(b)	Find out oxidation state of sodium in Na ₂ O ₂ .	1
24.	(a)	Explain why is there a phenomenal decrease in ionisation ent	halpy
		from carbon to silicon.	2
	(b)	Diamond is covalent. Yet it has high melting point Why?	1
25.	(a)	Explain redox reaction in terms of electron transfer reaction	. 2
	(b)	Explain why solubility of alkaline earth metal hydroxides in v	water
		increase down the group.	1
		Or	4
	(a)	Justify that the reaction 2 Na (s) + H_2 (g) \rightarrow 2Na H is a re	edox
		change.	2
	(b)	Explain why lithium show anomalous behaviour with respe	ect to
		other elements of the group.	1
26.	(a)	Substances which behave as an acid as well as an base are ca	alled
		amphoteric substances give reactions to prove that water i	s an
		amphoteric substance.	2
	(b)	Explain acidic behaviour of Acetylene.	2 .
	(c)	Give one reaction of H ₂ O ₂ in which it acts as an oxidising age	nt.1
27.	(a)	Alkyl halides on treatment with sodium metal in dry ethereal (free
		from moisture) solution. This reaction is known a Wurtz react	ion.
		The general equation of reaction is	2
		5	

R-X+2Na+X-R dryether R-R+2NaX use the statement to convert bromoethane into n - butane. (b) Write IUPAC name of 2 $CH_3 - CH - CH - CH_3$ CH₃ CH₃ Write structural formula of following compound 3,4,4,5 -Tetramethyl heptane. (c) What do you mean by the term "acid rain"? 1 28. (a) Discuss inductive effect. 1 (b) What do you mean by heterolytic cleavage of covalent bond? 1 (c) Write chemical equation for Friedel craft alkylation reaction of benzene. 1 (d) What happens when bromine is added to prop-1-yne? 1 (e) Why is KO₂ paramagnetic? 1 (a) Discuss Homologous series. (b) What do you mean by substrate and reagent? (c) How will you convert ethene to ethane? (d) How will you obtain ethene from ethyl bromide? 1 (e) Explain why sodium is less reactive than potassium?