Model Question Paper		Q.7	Modulus of a complex number $3 + i$ is				
Class –11 th Paper – Maths.			(a) 10	(b)	√10	(c) $-\sqrt{10}$ (d) zero	
Genera linstructions: -	num Marks: – 80	Q.8	If $n = 7$ and $r = 5$, then value of n_{C_r} is				
 (i) This Question paper contains – five sections A,B,C,D and I (ii) Each section is compulsory. However, there are international section is compulsory. 			(a) 21	(b) 42	(c) 3 !	5 (d) 75	
 questions. (iii) Section A has 16 MCQ's of 1 mark each. (iv) Section B has 5 very short Answer (VSA) – questions of 2 marks each. (v) Section C has 6 short Answer (SA) – questions of 3 marks each. 		Q.9	Q.9 If first term of G.P is 5 and its 10^{th} term is 5^{10} then the common ratio is				
			(a) 1	(b) 5	(c) 9	(d) 11	
 (vi) Section D has 4 long – answer (LA) – question of 4 marks (vii) Section E has 4 long – answer (LA) – questions of 5 marks 		Q.10	Slope of lines passing through the points $(3,-2)$ and $(-1, 4)$ is				
(SECTION - A) (Multiple choice Questions) Each question carries 1 mark	(1X16=16)		(a) $\frac{-2}{3}$	(b) <u>-a</u>	(c) $\frac{3}{2}$	(d) 0	
		Q.11	Lt sin 50	is			
Q.1 The set of Girls in a Boys school is			$\frac{\theta \rightarrow 0}{(a) 5}$	(b) <u>1</u>	(c) 1	(d) None of these	
(a) a null set (b) a singleton set (c) a finite set (d) None of these		Q.12	Derivativ	ve of <i>Cose</i>	c x is		
Q.2 Two sets A, B are disjoint iff						tx (c) tanx Cotx (d) None of these	
(a) AUB= \emptyset (b) A \cap B \neq \emptyset (c) A \cap B= \emptyset (d) A	A-B=A						
Q.3 If R is a relation on a finite set having n elements, then the number of relations on A is		(CASE STUDY - I)					
		Indian tr	Indian track and field athlete Neeraj Chopra who completes in the Javelin				
(a) 2^n (b) 2^{n^2} (c) n^2 (d) n^n		throw, w	on a gold r	nedal at T	okyo Olympics	. He is the first track and field	
Q.4 The value of π radian is equal to		athlete to win a gold medal for India at the Olympics.					
(a) 90°(b)180°(c)270° (d)360°		Q.13	Name the	e shape of	the path follow	ed by a Javelin	
Q.5 The general solution of $\tan 3x=1$ is			(a) Half el	lipse ((b) Parabola(c)	Hyperbola (d) None of these	
(a) $n\pi + \frac{\pi}{4}$ (b) $\frac{n\pi}{3} + \frac{\pi}{12}$ (c) $n\pi$ (d) $n\pi \pm \frac{\pi}{4}$		Q.14	If equation	on of a suc	ch a curve is giv	then by $x^2 = -16y$, then Co –	

Q.6 The value of $i^{13} + i^{14} + i^{15} + i^{16}$ is

(a) $i(b)-i(c) \operatorname{zero}(d) -1$

(a) (4, 0) (b) (0, 4)(c) (0, -4) (d) (-4, 0)

ordinates of the foci are

Downloaded from cclchapter.com

(CASE STUDY - II)

The derivative of y with respect to x is the change in y with respect to change in x. The derivative of f(x) at x_0 is given by

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Q.15 If
$$f(x) = x^{100} - x^{50} f'(1)$$
 is
(a) 0 (b) 50 (c) 51 (d) 101
Q.16 $y: \frac{x}{\tan x}, \frac{dy}{dx} = \cdots$

(a)
$$\cos^2 x$$
 (b) $\sec^2 x$ (c) $\frac{\tan x - \sec x}{\tan^2 x}$ (d) $\frac{\tan x - x \sec^2 x}{\tan^2 x}$
(SECTION-B) (2x5=10)

This section comprises of very short answer type questions (VSA) of 2- marks each.

- Q.17 How many times will be a wheel of a car rotate in a Journey of 1320m, if the radius of the wheel is 35cm?
- Q.18 Find the multiplicative inverse of $2+\sqrt{3}$ i. OR For any positive integer n, prove that $i^{2m} + i^{4m+1} + i^{4m+2} + i^{4m+2} = 0$
- Q.19 If $\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$, find x.

OR

In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?

- Q.20 Find the derivative of 5 sinx- $6 \cos x+7$.
- Q.21 Write the contrapositive of the statement, if a number is divisible by 9, then it is divisible by 3.

This section comprises of short answer type questions (SA) of 3 marks each.

Q.22 Prove that
$$\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$$

Q.23 Sovle the equality for real x:

 $\frac{2(x-2)}{5} \le \frac{5(2-x)}{3}$

Solve the system of inequalities graphically

 $2x+y-3 \ge$ and $x-2y+1 \le 0$

Q.24 Find the equation of the line passing through (-3,5) and perpendicular to the line through the points (2,5) and (3,-6).

OR

Find the angle between the lines $y - \sqrt{3x} - 5 = 0$ and $\sqrt{3y} - x + 6 = 0$

OR

Q.25 Find the equation of the circle passing through the points (2,3) and (-1,1) and whose centre is on the line x-3y-11=0

OR

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{26} + \frac{y^2}{16} = 1$

- Q.26 Findthe ratio in which the YZ-plane divides the line segment formed by joining the points (-2,4,7) and (3,-5,8).
- Q.27 A and B are events such that P(A)=0.42,P(B)=0.48 and P(A and B)=0.16. Determine (i) P (notA) (ii) P (not B) (iii) P(A or B)
 - (SECTION-D) (4x4=16)

This section comprises long answer (LA)- questions of 4 marks each.

Q.28 In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only not cricket? How many like tennis?

Downloaded from cclchapter.com

Q.29 A function f is defined by f(x)=2x-5. Write down the values of (i) f(0) (ii) f(7) (iii) f(-3)

> OR Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - Ex + 12}$

- Q.30 Using principle of mathematical Induciton, prove that $1^2+2^2+3^2+4^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$
- Q.31 Three coins are tossed once. Find the probability of getting (i) 3 heads (ii) no tail (iii) atmost 2 heads (iv) exactly two tails.

OR A and B are two events such that P(A)=0.54, P(B)=0.69 and P $(A \cap B)=0.35$ Find: (i) P (A \cup B) (ii) P(A' \cap B') (iii) P (A \cap B') (iv) P (B \cap A')

SECTION-E (5x4=20) This section comprises long answer (*LA*) - questions of 5 marks each.

- Q.32 Find the general solution of Sinx+sin3x+sin5x=0 OR If $\tan x = -\frac{4}{3}$, x in quadrant II, find the value of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ Q.33 Find the 4th term in the expansion of $(x-2y)^{12}$ OR Find the middle terms in the expansion of $(\frac{x}{3}+9y)^{10}$
- Q.34 Find the sum to n terms of the series $1x2+2x3+3x4+4x5+\cdots$
- Q.35 Find the mean and variance for the following distribution

Classes	Frequencies
0-30	2
30-60	3
60-90	5
90-120	10
120-150	3
150-180	5
180-210	2

Downloaded from cclchapter.com