Model Question Paper

Class - $\mathbf{1 1}^{\text {th }}$
Paper - Maths.
Time 3:00 Hrs.
Maximum Marks: - 80

Genera linstructions:

(i) This Question paper contains - five sections A, B, C, D and E.
(ii) Each section is compulsory. However, there are internal choices in some questions.
(iii) Section A has 16 M CQ's of 1 mark each.
(iv) Section B has 5 very short Answer (VSA) - questions of 2 marks each.
(v) Section C has 6 short Answer (SA) - questions of 3 marks each.
(vi) Section D has 4 long - answer (LA) - question of 4 marks each.
(vii) Section E has 4 long-answer (LA) - questions of 5 marks each
(SECTION - A)
(1X16=16)
(Multiple choice Questions)
Each question carries 1 mark
Q. 1 The set of Girls in a Boys school is
(a)a null set (b) a singleton set (c) a finite set (d) None of these
Q. 2 Two sets A, B are disjoint iff
(a) $\mathrm{AUB}=\emptyset(\mathrm{b}) \mathrm{A} \cap \mathrm{B} \neq \emptyset(\mathrm{c}) \mathrm{A} \cap \mathrm{B}=\emptyset$
(d) $\mathrm{A}-\mathrm{B}=\mathrm{A}$
Q. 3 If R is a relation on a finite set having n elements, then the number of relations on A is
(a) 2^{n} (b) $2^{n^{2}}$ (c) n^{2} (d) n^{n}
Q. 4 The value of π radian is equal to
(a) $90^{\circ}(\mathrm{b}) 180^{\circ}(\mathrm{c}) 270^{\circ}$
(d) 360°
Q. 5 The general solution of $\tan 3 x=1$ is
$\begin{array}{lll}\text { (a) } n \pi+\frac{\pi}{4} & \text { (b) } \frac{n \pi}{3}+\frac{\pi}{12} & \text { (c) } n \pi\end{array}$ (d) $\pi \pi \pm \frac{\pi}{4}$
Q. 6 The value of $i^{13}+i^{14}+i^{15}+i^{16}$ is
(a) $i(\mathrm{~b})-i(\mathrm{c})$ zero(d) -1
Q. 7 Modulus of a complex number $3+i$ is
(a) 10
(b) $\sqrt{10}$
(c) $-\sqrt{10}$
(d) zero
Q. 8 If $n=7$ and $r=5$, then value of $n_{C_{r}}$ is
(a) 21
(b) 42
(c) 35
(d) 75
Q. 9 If first term of G.P is 5 and its $10^{\text {th }}$ term is $5,{ }^{10}$ then the common ratio is
(a) 1
(b) 5
(c) 9
(d) 11

Slope of lines passing through the points $(3,-2)$ and $(-1,4)$ is
$\begin{array}{ll}\text { (a) } \frac{-2}{3} & \text { (b) } \frac{-a}{2}\end{array}$
(c) $\frac{3}{2}$
(d) 0
Q. $11 L t \frac{\sin 5 \theta}{\theta}$ is
$\theta \rightarrow 0$
(a) 5
(b) $\frac{1}{5}$
(c) 1
(d) None of these
Q. 12 Derivative of $\operatorname{Cosec} x$ is
(a) Cosecx Cotx
(b) -Cosecx Cotx
(c) $\tan x \operatorname{Cot} x$
(d) None of these

CASE STUDY - I

Indian track and field athlete Neeraj Chopra who completes in the Javelin throw, won a gold medal at Tokyo Olympics. He is the first track and field athlete to win a gold medal for India at the Olympics.
Q. 13 Name the shape of the path followed by a Javelin
(a) Half ellipse
(b) Parabola(c) Hyperbola
(d) None of these
Q. 14 If equation of a such a curve is given by $x^{2}=-16 y_{\text {, }}$ then $\mathrm{Co}-$ ordinates of the foci are
(a) $(4,0)(b)(0,4)(c)(0,-4)$
(d) $(-4,0)$

The derivative of y with respect to x is the change in y with respect to change in x. The derivative of $f(x)$ at x_{0} is given by

$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f x_{0}}{\Delta x}
$$

$$
\text { Q. } 15 \quad \text { If } f(x)=x^{100}-x,{ }^{50} f^{\prime}(1) \text { is }
$$

(a) 0
(b) 50
(c) 51
(d) 101
Q. $16 \mathrm{y}: \frac{x}{\tan x}, \frac{d y}{d x}=$
(a) $\cos ^{2} x$
(b) $\sec ^{2} x$
(c) $\frac{\tan x-\sec x}{\tan ^{2} x}$
(d) $\frac{\tan x-x \sec ^{2} x}{\tan ^{2} x}$
(SECTION-B)
($2 \times 5=10$)

This section comprises of very short answer type questions (VSA) of 2- marks each.
Q. 17 How many times will be a wheel of a car rotate in a Journey of 1320 m , if the radius of the wheel is 35 cm ?
Q. 18 Find the multiplicative inverse of $2+\sqrt{3} \mathrm{i}$.

OR

For any positive integer n, prove that $i^{2 n}+i^{4 n+1}+i^{4 n+2}+i^{4 n+3}=0$
Q. 19 If $\frac{1}{8!}+\frac{1}{9!}=\frac{x}{10!}$, find x.

OR
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
Q. $20 \quad$ Find the derivative of $5 \sin \mathrm{x}-6 \cos \mathrm{x}+7$.
Q. 21 Write the contrapositive of the statement, if a number is divisible by 9 , then it is divisible by 3 .

This section comprises of short answer type questions (SA) of 3 marks each.
Q. 22 Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
Q. 23 Sovle the equality for real x :
$\frac{a(x-2)}{5} \leq \frac{5(2-x)}{3}$

OR

Solve the system of inequalities graphically
$2 x+y-3 \geq$ and $x-2 y+1 \leq 0$
Q. 24 Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(3,-6)$.

OR
Find the angle between the lines $y-\sqrt{3} x-5=0$ and $\sqrt{3} y-x+6=0$
Q. 25 Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $\mathrm{x}-3 \mathrm{y}-11=0$

OR

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
Q. 26 Findthe ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.
Q. 27 A and B are events such that $P(A)=0.42, P(B)=0.48$ and $P(A$ and $B)=0.16$ Determine (i) P (notA) (ii) P (not B$)$ (iii) $\mathrm{P}(\mathrm{A}$ or B$)$

(SECTION-D)

($4 \times 4=16$)
This section comprises long answer (LA)- questions of 4 marks each.
Q. 28 In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only not cricket? How many like tennis?
$\begin{array}{lll}\text { (i) } f(0) & \text { (ii) } f(7) & \text { (iii) } f(-3)\end{array}$
OR
Find the domain of the function $\mathrm{f}(\mathrm{x})=\frac{x^{2}+2 x+1}{x^{2}-\mathrm{Ex}+12}$
Q. 30 Using principle of mathematical Induciton, prove that
$1^{2}+2^{2}+3^{2}+4^{2}+$ \qquad $+n^{2}=\frac{n(n+1)(2 n+1)}{}$
Q. 31 Three coins are tossed once. Find the probability of getting (i) 3 heads (ii) no tail (iii) atmost 2 heads (iv) exactly two tails.

OR

A and B are two events such that $P(A)=0.54, P(B)=0.69$ and P $(\mathrm{A} \cap B)=0.35$
Find:
(i) $\mathrm{P}(\mathrm{A} \cup B)$
(ii) $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$
(iii) $\mathrm{P}\left(\mathrm{A} \cap B^{\prime}\right)$
(iv) $\mathrm{P}\left(\mathrm{B} \cap A^{\prime}\right)$

SECTION-E
 (5x4=20)

This section comprises long answer ($L A$) - questions of 5 marks each.
Q. 32 Find the general solution of
$\sin x+\sin 3 x+\sin 5 x=0$
If $\tan x=-\frac{4}{3}$, x in quadrant II, find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
Find the $4^{\text {th }^{3}}$ term in the expansion of $(x-2 y)^{12}$
OR
Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$
Find the sum to n terms of the series
$1 \times 2+2 \times 3+3 \times 4+4 \times 5+$

Find the mean and variance for the following distribution

Classes	Frequencies
$0-30$	2
$30-60$	3
$60-90$	5
$90-120$	10
$120-150$	3
$150-180$	5
$180-210$	2

