Model Question Paper Mathematics Class 10+2

Time Allowed : 3 hours

Max. Marks 85

Special Instructions :-

- (i) Write Question paper series in the circle at the top left side of title page of Answer Book.
- (ii) While answering questions, indicate on the Answer-Book the same Question No. as appears in the question paper.
- (iii) Try to answer the questions in serial order as far as possible.
- (iv) All questions are compulsory.
- (v) Internal choices have been provided in some questions. Attempt only one of the choices in such questions.
- (vi) Question Nos. 1 to 10 are multiple choice questions of 1 mark each. Question no.
 11 to 13 are of 3 marks each, 14 to 22 are of 4 marks each, 23 to 27 are of 6 marks each.
- (vii) Use of calculator is not allowed.

Q1.
$$\operatorname{Cos}^{-1}\left(\cos \frac{7\pi}{6}\right)$$
 is equal to
(a) $\frac{7\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$ (1)
Q2. The number of all possible matrices of order 3×3 with each entry 00N 1 is
(a) 27 (b) 18 (c) 81 (d) 512 (1)
Q3. The derivative of $\sin^{-1}x$ is
(a) $\frac{1}{\sqrt{1-x^2}}$ (b) $-\frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{1-x^2}$ (d) $\frac{1}{1+x^2}$ (1)
Q4. The approximate change in volume V of a cube of side x metres caused by
increasing the side by 2% is : (1)
(a) 0.06 x³m³ (b) 0.002 x³m³ (c) 0.6 x³m³ (d) 0.006 x³m³
Q5. $\int \sec x \, dx = ?$ (1)
(a) $\tan x + c$ (b) $\frac{\log x}{\sec x} + \frac{\tan x}{+c}$ (c) $\frac{\log x}{\sec x} - \tan x$ (d) $\cot x + C$
(1)

Q6. The degree of the differential equation
$$\left(\frac{d^2y}{dx^3}\right)^3 + \left(\frac{dy}{dx}\right)^3 + 2y = 0$$
 is (1)

Q7. Let \vec{a} and \vec{b} be the two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if (1)

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$
Q8. $\vec{a} \cdot \vec{a} = ?$
(A) \vec{a}^2 (B) $|\vec{a}|^2$ (C) 0 (D) $|\vec{a}^2|$

Q9. Distance between two planes 2x+3y+4z = 4 and 4x+6y+8z=12 is (1)

(A) 2 units (B) 4 units (C) 8 units (D)
$$\frac{2}{\sqrt{29}}$$
 units

Q10. The probability of obtaining an even prime number on each die when a pair of dice is rolled is : (A) 0 (B) $\frac{1}{3}$ (C) $\frac{1}{12}$ (D) $\frac{1}{36}$ (1)

Q11. Find all points of discontinuity of *f*, where *f* is defined by $f(x) = - \begin{cases} \frac{1 \times 1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ (3)

- Q12. Find the intervals in which the function *f*, given by $f(x) = 2x^3 3x^2 36x + 7$ is strictly increasing. (3)
- Q13. A die is tossed thrice. Find the probability of getting an odd number atleast once.(3)
- Q14. Find gof and fog, if f(x) = |x| and g(x) = |5x-2|. (4)
- Q15. Prove that: $\cos^{51}\frac{4}{5} + \cos^{51}\frac{12}{13} = \cos^{51}\frac{33}{65}$ (4)

Q16. Express the following matrix as sum of a symmetric and skew symmetric matrix. $\begin{pmatrix}
3 & 5 \\
1 & -1
\end{pmatrix}$ OR

By using properties of determinants show that

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a-b)(b-c)(c-a)$$
(4)

- Q17. Differentiate $\sin(\cos x^2)$ w.r.t. x (4)
- Q18. Evaluate: $\int \sqrt{x^2 + 4x + 1} \, dx$ (4) R Evaluate: $\int \frac{3x-1}{(x+2)^2} \, dx$

Q19. Using properties of definite integral evaluate
$$\int_{1}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$
 (4)

Q20. Find the general solution of differential equation : $x \frac{dy}{dx} + 2y = x^2 (x \neq 0)$ (4)

Solve the differential equation :

$$(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

Q21. Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} - \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ respectively are coplanar. (4)

- Q22. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as "number greater than 4". (4)
- Q23. Solve the system of binear equations, using matrix method: (6)

$$2x+y+z = 1$$

 $x-2y-z = \frac{3}{2}$
 $3y-5z = 9$

Q24. Find the area enclosed by the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (6)
OR

Using integration, find the area bounded by the curve |x| + |y| = 1

Q25. Find the shortest distance between the lines $\vec{r} = (\hat{1} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{1} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = 4\hat{1} + 5\hat{j} + 6\hat{k} + \mu (2\hat{1} + 3\hat{j} + \hat{k})$

OR

Find the angle between the line

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$$

and the plane 10 x + 2y - 11 z = 3 (6)

Q26. Find the absolute maximum value and absolute minimum value of the function.

 $f(x) = x^3$ in the interval [-2, 2] OR

Find the equations of tangent and normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2 \text{ at } (1, 1)$

Q27. Minimize z = -3x + 4y subject to

 $x + 2y \leq 8$ $3x + 2y \leq 12$

x, y ≥ 0 graphically.

(6)

(6)

Distribution of Marks

Unit I (9 marks)

- 1. Relations and functions. 4
- 2. Inverse trigonometric function 1+4=5

Unit II (11 marks)

Matrices and determinants 1+4© + 6 = 11

Unit III (38 marks)

- 1. Continuity and differentiability 1+3+4=8
- 2. Applications of Derivatives $1+3+6 \odot = 10$
- 3. Integrals 1+4© +4=9
- 4. Application of integrals 6° = 6
- 5. Differential equations $1+4^{\circ} = 5$

Unit IV (13 marks)

- 1. Vectors 1+1+4 = 6
- 2. 3-D Geometry $1+6^{\circ} = 7$

Unit V (6 marks) Linear Programming 6

Unit VI (8 marks) Probability 1+3+4=8

- Note : (1) Total No. of Questions = 27
 - (2) Q.No. 1 to 10 of 1 mark each, 11 to 13 are of 3 marks each, 14 to 22 are of 4 marks each, 23 to 27 are of 6 marks each.

Choice :

Q.No. 16,	18,	20,	24,	25,	26	
Marks 4,	4,	4,	6,	6,	6	= 30 marks

Solutions Set Mathematics 10+2

Q1.	Cos ⁻¹	$\left(\cos \frac{7\pi}{6}\right)$ is equ	ual to						
	(a)	$\frac{7\pi}{6}$	(b)	$\frac{5\pi}{6}$	©	$\frac{\pi}{3}$	(d)	$\frac{\pi}{6}$	
Soluti	on 1 :	Answer is $\frac{5\pi}{6}$	<u>τ</u> i.e. k)					(1)
Q2.	The n (a)	number of all 27	possib (b)			3×3 with eac 81	h entry (d)	/ 00N 1 is 512	
Soluti	ion 2 :	Answer is 5	12 i.e.	d					(1)
Q3.	The c	derivative of s	-1 sin x is						
	(a)	$\frac{1}{\sqrt{1-x^2}}$	(b) –	$-\frac{1}{\sqrt{1-x^2}}$	(c)	$\frac{1}{1-x^2}$	(d)	$\frac{1}{1+x^2}$	
Soluti	ion 3:	Answer is	$\frac{1}{1-x^2}$	i.e. a					(1)
Q4.		easing the sid	e by 2	% is :		ube of side x 0.6 x³m³		-	
Soluti	ion 4:	Answer is 0	.06 x³r	n³ i.e. a					(1)
Q5.	∫secx (a)	dx = ? tanx + c	(b)	$\frac{\log}{\log x} + \frac{\tan x}{+ c}$	(c) <u></u>	<u>log</u> ec x − tanx	(d) c	otx + C	
Soluti	ion 5 :	Answer is	$\frac{\log}{\sec x}$	$+\frac{\tan x}{+c}$ i.e. b)				(1)
Q6.	The c	degree of the	differe	ntial equation	$\left(\frac{d^2y}{dx^3}\right)$	$\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3 + 2$	y = 0 i	S	
	(a) 3	(b) 1		© 2	(d) N	ot defined			(1)
Soluti	ion 6 ·	Answor is 3							

Solution 6 : Answer is 3 i.e. a

Q7. Let \vec{a} and \vec{b} be the two unit vectors and θ is the angle between them. Then $\vec{a+b}$ is a unit vector if

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$ (1)
Solution 7 : Answer is $\theta = \frac{2\pi}{3}$ i.e. D

Q8.
$$\overrightarrow{a} \cdot \overrightarrow{a} = ?$$

(A) \overrightarrow{a}^2 (B) $|\overrightarrow{a}|^2$ (C) 0 (D) $|\overrightarrow{a^2}|$ (1)

Solution 8 : Answer is $|\vec{a}|^2$ i.e. B

Q9. Distance between two planes 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 (1)

(A) 2 units (B) 4 units (C) 8 units (D)
$$\frac{2}{\sqrt{29}}$$
 units
Solution 9 : Answer is $\frac{2}{\sqrt{29}}$ units i.e. D.

Q10. The probability of obtaining an even prime number on each die when a pair of dice is rolled is : (A) 0
(B) $\frac{1}{3}$ (c) $\frac{1}{12}$ (D) $\frac{1}{36}$ (1)

Solution 10 : Answer is
$$\frac{1}{36}$$
 i.e. D

Q11. Find all points of discontinuity of f, where f is defined by (3)

$$f(\mathbf{x}) = -\begin{cases} \frac{\mathbf{1} \times \mathbf{1}}{\mathbf{x}} & \text{if } \mathbf{x} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{x} = \mathbf{0} \end{cases}$$

Solution 11 : L.H.L. = $lt = t = f(x) = \frac{lt}{x \to 0} \frac{(-x)}{x} = -1$

R.H.L. =
$$lt f(x) = \frac{lt}{x \to 0} \frac{x}{x} = 1$$

L.H.L. \neq R.H.L. \therefore *f* is discontinuous at x = 0

Q12. Find the intervals in which the function *f*, given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly increasing. (3)

Solution 12: Let f'(x) = 0

$$\Rightarrow 6(x-3)(x+2) = 0$$

 $x = 3 \text{ or } -2$
f is strictly increasing in $(-\infty, -2) \cup (3, \infty)$

Q13. A die is tossed thrice. Find the probability of getting an odd number at least once. (3)

Solution 13:
$$P(A) = \frac{3}{6} = \frac{1}{2}$$

Required probability = P (atleast an odd number)
 $= 1 - P(\overline{A} \ \overline{A} \ \overline{A})$
 $= 1 - \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right)$
 $= \frac{7}{8}$

Q14. Find gof and fog, if f(x) = |x| and g(x) = |5x-2|.

Solution 14:
$$f(x) = |x|, g(x) = |5x-2|$$

 $(gof)(x) = g(f(x)) = g(|x|) = |5|x|-2|$
 $(fog)(x) = f(g(x)) = f(|5x-2|) = ||5x-2|$

Q15. Prove that:
$$\cos^{1}\frac{4}{5} + \cos^{1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Solution 15: Let $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$

We know that

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$=\frac{4}{5} \times \frac{12}{13} - \frac{3}{5} \times \frac{5}{13}$$
$$=\frac{33}{65}$$
$$x + y = \cos^{-1}\frac{33}{65}$$
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$
(3)

Downloaded from cclchapter.com

(4)

Q16. Express the following matrix as sum of a symmetric and skew symmetric matrix.

 $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ Solution 16: $A = \begin{pmatrix} 3 & 5 \\ 1 & -1 \end{pmatrix}$ and $A' = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$ $P = \frac{1}{2}(A + A')$ $=\frac{1}{2} \begin{pmatrix} 6 & 6 \\ 6 & -2 \end{pmatrix}$ $= \begin{pmatrix} 3 & 3 \\ 3 & -1 \end{pmatrix}$ \Rightarrow P' = P \Rightarrow P is symmetric matrix. $Q = \frac{1}{2}(A - A')$ $Q = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ \Rightarrow Q' = -Q $\Rightarrow \mathsf{P} + \mathsf{Q} = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} = \mathsf{A}$

A is sum of symmetric & skew symmetric Matrix.

OR

By using properties of determinants show that

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a-b)(b-c)(c-a)$$

Solution16 :

 $\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$

Operate
$$R_2 \rightarrow R_2 - R_1$$

 $R_3 \rightarrow R_3 - R_1$

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 0 & b-a & b^2-a^2 \\ 0 & c-a & c^2-a^2 \end{vmatrix}$$

Taking common & expanding

$$\Delta = (a-b)(b-c)(c-a)$$
(4)

Q17. Differentiate sin (cosx²) w.r.t. x

Solution 17: Let
$$y = \sin(\cos(x^2))$$

$$\frac{dy}{dx} = \cos(\cos x^2)(-\sin x^2) \frac{d}{dx} x^2$$

$$= -2x \sin x^2 \cos(\cos x^2)$$
Q18. Evaluate: $\int \sqrt{x^2 + 4x + 1} dx$

$$= \int \sqrt{x^2 + 4x + 1} dx$$

$$= \int \sqrt{(x+2)^2 - (\sqrt{3})^2} dx$$
using formula $\int \sqrt{x^2 - a^2}$

$$= \frac{(x+2)}{2} \sqrt{(x+2)^2 - (\sqrt{3})^2} - \frac{3}{2} \log [(x+2) + \sqrt{(x+2)^2 - (\sqrt{3})^2}] + C$$

$$= \frac{(x+2)}{2} \sqrt{x^2 + 4x + 1} - \frac{3}{2} \log [(x+2) + \sqrt{x^2 + 4x + 1}] + C$$
Evaluate: $\int \frac{3x-1}{(x+2)^2} dx$
Solution 18: Let $I = \int \frac{3x-1}{(x-2)^2} dx$

$$= \frac{3 \log (x-2) - 5 \left(\frac{1}{(x-2)}\right) + C$$
(5)

Q19. Using properties of definite integral evaluate $\int_{1}^{4} \log(1 + \tan x) dx$

(4)

Solution 19 : Let I = $\int_{0}^{\frac{\pi}{4}} \log (1 + \tan x) dx$ $Using \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$ We get $I = \int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1 + \tan x}\right) dx$ $2I = \int_{0}^{\frac{\pi}{4}} \log 2 dx$ $I = \frac{1}{2} \log 2 [x]_{0}^{\frac{\pi}{4}}$

Q20. Find the general solution of differential equation

$$x \frac{dy}{dx} + 2y = x^2 (x \neq 0)$$

Solution 20: Given differential equation is

 $I = \frac{\pi}{8} \log 2$

$$x \frac{dy}{dx} + 2y = x^{2}$$
$$\frac{dy}{dx} + \frac{2}{x}y = x$$
$$I.F. = e^{\log x^{2}} = x^{2}$$
$$y.x^{2} = \int x^{3} dx + c$$
$$y = \frac{x^{2}}{4} + cx^{-2}$$

OR

(6)

Solve the differential equation :

 $(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$ OR Solution : $\frac{dx}{dy} = \frac{e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right)}{1 + e^{\frac{x}{y}}}$

Put x = vy
$$\Rightarrow \frac{dx}{dy} = v + y\frac{dv}{dy}$$

 $v + y\frac{dv}{dy} = \frac{-e^v(1-v)}{1 + e^v}$
 $y\frac{dv}{dy} = \frac{-(e^v + v)}{e^v + 1}$
Integrating we get
 $\log (e^v + v) y = \log c$
 $-x + ye^{x/y} = c$

Q21. Show that the four points A, B, C and D with position vectors $4\hat{i}+5\hat{j}+\hat{k}$, $-\hat{j}-\hat{k}$, $3\hat{i}+9\hat{j}+4\hat{k}$ and $-4\hat{i}+4\hat{j}+4\hat{k}$ respectively are coplanar. (4)

Solution 21:

$$[AB AC AD] = \begin{bmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{bmatrix} = 0$$

Hence A, B, C and D are coplanar.

Q22. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as "number greater than 4".

Solution 22: Sample space is {1, 2, 3, 4, 5, 6}

P (Success) =
$$\frac{1}{3}$$

x = 0, 1, 2
P(x=0) = P($\overline{S} \ \overline{S}$) = $\frac{4}{9}$
P(x=1) = P($S \ \overline{S} \ or \ \overline{S} \ S$) = $\frac{4}{9}$
(7)

$$P(x=2) = P(SS) = \frac{1}{9}$$

Probability distribution

x	0	1	2
P(x)	<u>4</u>	<u>4</u>	<u>1</u>
	9	9	9

Q23. Solve the system of binear equations, using matrix method :

2x+y+z = 1 $x-2y-z = \frac{3}{2}$ 3y-5z = 9

Solution 23: Let Ax = B

$$(A) = 34 \neq 0$$

$$AdjA = \begin{vmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{vmatrix}$$

$$\bar{A}^{1} = \frac{AdjA}{|A|} = \frac{1}{34} \begin{vmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{vmatrix}$$

$$X = \begin{bmatrix} 1 \\ \frac{1}{2} \\ -\frac{3}{2} \end{bmatrix} \Rightarrow x = 1, y = \frac{1}{2}, z = -\frac{3}{2}$$

Q24. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Solution 24: Considering horizontal strips

(6)

(8)

Using integration, find the area bounded by the curve |x| + |y| = 1

Solution: Given Curve
$$|x| + |y| = 1$$

 $x + y = 1 \rightarrow (1)$ $x - y = 1 \rightarrow (2)$
 $-x + y = 1 \rightarrow (3)$ $-x - y = 1 \rightarrow (4)$
Required area $= 4 \int_{0}^{1} y \, dx = 4 \left[x - \frac{x^2}{2} \right]_{0}^{1}$
 $= 4 \left[\frac{1}{2} \right] = 2$

Q25. Find the shortest distance between the lines $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu (2\hat{i} + 3\hat{j} + \hat{k})$

Solution 25 :

Here
$$\vec{a}_1 = \hat{1} + 2\hat{j} + 3\hat{k}, \vec{b}_1 = \hat{1} - 3\hat{j} + 2\hat{k}$$

 $\vec{a}_2 = 4\hat{1} + 5\hat{j} + 6\hat{k}, \vec{b}_2 = 2\hat{1} + 3\hat{j} + \hat{k}$
 $\vec{a}_2 - \vec{a}_1 = 3\hat{1} + 3\hat{j} + 3\hat{k}$
 $\vec{b}_1 \times \vec{b}_2 = -9\hat{1} + 3\hat{j} + 9\hat{k}$
 $|\vec{b}_1 \times \vec{b}_2| = \sqrt{171}$
S.D. $= \left| \frac{(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)}{(\vec{b}_1 \times \vec{b}_2)} \right| = \left| \frac{-27 + 9 + 27}{\sqrt{171}} \right| = \frac{9}{\sqrt{171}}$ units

OR

Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10 x + 2y - 11 z = 3

Solution:

$$\vec{r} = (-\vec{i} + 3\vec{k}) + \lambda (2\vec{i} + 3\vec{j} + 6\vec{k})$$

$$Sin \theta = \left| \frac{(2\vec{i} + 3\vec{j} + 6\vec{k}) \cdot (10\vec{i} + 2\vec{j} - 11\vec{k})}{\sqrt{2^2 + 3^2 + 6^2} \cdot \sqrt{10^2 + 2^2 + (11)^2}} \right|$$

(9)

$$= \frac{8}{21}$$
$$\theta = \operatorname{Sin}^{-1} \frac{8}{21}$$

Q26. Find the absolute maximum value and absolute minimum value of the function. $f(x) = x^3$ in the interval [-2, 2]

Solution 26:
$$f(x) = x^3$$
, $x \in [-2, 2]$
 $f'(x) = 0$
 $3x^2 = 0$
 $x = 0 \in [-2, 2]$
Absolute maximum value of $f(x) = 8$ at $x = 2$
Absolute minimum value of $f(x) = -8$, at $x = -2$

OR

Find the equations of tangent and normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2 \operatorname{at}(1, 1)$

Solution 26: Differentiating
$$x = \frac{2}{3} + y = \frac{2}{3} = 2$$

 $\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$
Slope of tangent at (1, 1) $\frac{dy}{dx}\Big|_{(1,1)} = -1$
Equation of tangent $y + x - 2 = 0$
Equation of normal is $y - x = 0$

(10)

Q27. Minimize z = -3x + 4y subject to

 $\begin{array}{ll} x+2y & \leqslant 8 \\ 3x+2y \leqslant 12 \\ x,y & \geqslant 0 \quad \mbox{graphically.} \end{array}$

E (2, 3) 6

Z is minimum at C (4, 0), x = 4, y = 0