Term-II

Examination April, 2022
 Mathematics-XII

Pattern of the Question Paper

Model Question Paper
Time allowed : $\mathbf{3} \mathbf{h r s}$.
M.M-50
Q. No. 1 to 20 are of 1 marks each (MCQ)
Q.No. 21 to 26 are of 3 marks.
Q.No. 27 to 28 are of 6 marks

1. The slope of the normal to the curve $Y=2 x^{2}+3 \sin x$ at $x=0$ is
(a) 3
(b) $\frac{1}{3}$
(c) -3
(d) $\frac{-1}{3}$
2. $\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}$ equals to
(a) $\sin ^{-1} x+c$
(b) $\tan x+c$
(c) $-\cos x^{-1} x+c$
(d) None of these
3. $\int \frac{d x}{x^{2}+2 x+2}$ equals to
(a) $x \tan ^{-1}(x+1)+c$
(b) $\tan ^{-1}(x+1)+c$
(d) $(x+1) \tan ^{-1} x+c$
(d) $\tan ^{-1} x+c$
4. $\int a^{x} d x$ equals to
(a) $a^{x}-\log a+c$
(b) $\frac{\log a}{a^{x}}+c$
(c) $\frac{\mathrm{a}^{\mathrm{x}}}{\log \mathrm{a}}+\mathrm{c}$
(d) $a^{x}+c$
5. $\int x^{2} e^{x^{3}} d x$ equals to
(a) $\frac{1}{3} \mathrm{xe}^{\mathrm{x}^{3}}$
(b) $\frac{1}{3} e^{x^{3}}+c$
(c) $\frac{1}{2} e^{x^{3}}+c$
(d) None of these
6. $\int x \cdot \sin x d x$ equals.
(a) $-x \sin x+\cos x+c$
(b) $-x \cos x+\sin +c$
(c) $-x \cos x-\sin x+c$
(d) $\sin x+\cos x+c$
7. $\int \frac{(\log x)^{2}}{x} d x$ equals
(a) $\frac{1}{3}(\log |\mathrm{x}|)^{3}+\mathrm{c}$
(b) $\frac{\log x}{x}$
(c) $\frac{(\log x)^{3}}{x^{3}}$
(d) None of these
8. $\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals
(a) $\tan \mathrm{x}+\cot \mathrm{x}+\mathrm{c}$
(b) $\tan x-\cot x+c$
(c) $\tan x \cot x+c$
(d) $\tan x-\cot 2 x+c$
9. $\int \sec x d x$ equals to
(a) $\log |\sec x+\tan x|+c$
(b) $\sec x-\tan x+c$
(c) $\log |\sec \mathrm{x}-\tan \mathrm{x}|+\mathrm{c}$
(d) $\log |\operatorname{cosec} x-\cot x|+c$
10. Area of the region bounded by the curve $y^{2}=4 x, y-$ axis and the line $y=3$ is
(a) 2
(b) $\frac{9}{4}$
(c) $\frac{9}{5}$
(d) $\frac{9}{2}$
11. The order of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-\frac{3 d y}{d x}+y=0$ is
(a) 2
(b) 1
(c) 0
(d) Not defined
12. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
(a) $e^{x}+e^{-y}=c$
(b) $e^{x}+e^{y}=c$
(c) $e^{-x}+e^{y}=c$
(d) $e^{-x}+e^{-y}=c$
13. The number of arbitrary constants in the General solution of a differential equation of fourth order are
(a) 0
(b) 2
(c) 3
(d) 4
14. The angle between two non-zero vector $\stackrel{\perp}{\mathrm{a}}$ and $\stackrel{1}{\mathrm{~b}}$ is given by
(a) $\sin \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|}$
(b) $\sin \theta=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|}$
(c) $\sin \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}||\mathrm{b}|}$
(d) None of these
15. What is the projection of the vector $\hat{i}-\hat{j}$ the vector $\hat{i}+\hat{j}$
(a) 0
(b) 1
(c) 2
(d) 3
16. The value of $|\stackrel{\mathbf{a}}{\mathrm{a}} \times \stackrel{\mathrm{I}}{\mathrm{b}}|$ if $\stackrel{\mathbf{a}}{\mathrm{a}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\stackrel{\mathrm{t}}{\mathrm{b}}=3 \hat{\mathrm{l}}+5 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
(a) $\sqrt{705}$
(b) $\sqrt{507}$
(c) 507
(d) 0
17. If a line has direction ratio $2,-1,-2$ Then the direction cosines are
(a) $\frac{3}{2}, \frac{-1}{3}, \frac{-2}{3}$
(b) $-\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}$
(c) $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
(d) None of these

90
18. What is the equation of the plane with intercepts 2,3 and 4 on the x, y and z - axis respectively.
(a) $\frac{\mathrm{x}}{2}+\frac{\mathrm{y}}{3}+\frac{\mathrm{z}}{4}=1$
(b) $\frac{\mathrm{x}}{2}+\frac{\mathrm{y}}{3}+\frac{\mathrm{z}}{4}=0$
(c) $2 x+3 y+4 z=1$
(d) $\frac{\mathrm{x}}{4}+\frac{\mathrm{y}}{3}+\frac{\mathrm{z}}{2}=1$
19. If $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=0$, Then $\mathrm{P}(\mathrm{A} / \mathrm{B})$ is
(a) $=0$
(b) $\frac{1}{2}$
(c) Not defined
(d) 1
20. The probability of obtaining an even prime number an each dice, when a pair of dice is called as
(a) 0
(b) $\frac{1}{3}$
(c) $\frac{1}{12}$
(d) $\frac{1}{36}$
21. Find the equation of the tangent to the curve at the pts.
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
OR
Find the equation of the normal at the point $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ for the curve $a y^{2}=x^{3}$
22. Integrate the functions
(a) $\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x$ OR $\int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x$
(b) $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x+\sqrt{\cos x}}} d x$ OR $\int e^{x}(\sin x+\cos x) d x$
23. Find area of the region bounded by ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

OR
Find the area bounded by the curve $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$
24. Find the general solution of the differential equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)
$$

OR
$\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$
25. If $\vec{a}, \vec{b}, \vec{c}$ are unit vector such that $\vec{a}+\vec{b}+\vec{c}=0$
find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
OR
Find the area of the parallelogram whose adjacent sides are deter-
mined by the vectors $\stackrel{\mathbf{a}}{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}} \mathrm{a}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\stackrel{\mathbf{b}}{\mathrm{b}}=2 \hat{\mathrm{l}}-7 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
26. A dies is thrown 6 times. If "getting an odd number" is a success, what is the probility of
(a) 5 success
(b) at most 5 success

OR
If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, find $P(A \cap B)$, If and A and B are independent events.
27. Find the shortest distance between the lines

$$
\begin{aligned}
& \mathbf{I}=(\hat{l}+2 \hat{j}+\hat{k})+(\hat{l}+\hat{j}+\hat{\mathrm{u}}) \text { and } \\
& \stackrel{\mathbf{1}}{\mathbf{r}}=(2 \hat{\mathrm{l}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+(2 \hat{\mathrm{l}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})
\end{aligned}
$$

28. Solve the linear programming problem graphically Maximize $Z=5 x+3 y$
Subject to $3 x+5 y \leq 15,5 x+2 y \leq 10 x \geq 0 y \geq 0$
