HIMACHAL PRADESH BOARD OF SCHOOL EDUCATION, DHARAMSHALA

CLASS: XII SUBJECT: MATHEMATICS (Full Syllabus)

TIME ALLOWED: 3 HOURS MAX.MARKS:80

Special Instructions:

- While answering your Questions, you must indicate on your answer-book the same Question No. as appear in your Questions Paper.
- ii. All Questions are compulsory.
- iii. Internal choices have been provided in some questions. Attempt only one of the choices in such questions.
- Do not leave blank page / pages in your answer book. iv.
- Question numbers 1 16 are multiple choice questions (M.C.Q.) carrying 1 ٧. mark each.
- Question numbers 17 25 are of 3 marks each. vi.
- vii. Question numbers 26 – 28 are of 4 marks each.
- viii. Question numbers 29 – 33 are of 5 marks each.
- ix. Graph paper must be attached in between the answer book.
- Q.1. Let f: R \rightarrow R be defined as f(x) = 3x (1) Choose the correct answer:
 - (a) f is one-one onto
- (b) f is many one onto
- (c) f is one-one but not onto (d) f is neither one-one nor onto
- Q.2. $\tan^{-1}\sqrt{3} \cot^{-1}(-\sqrt{3})$ is equal to (1)
 - (a) $2\sqrt{2}$
- (b) π

- Q.3. If $\sin^{-1} x = y$ then: (1)
 - (a) $0 \le y \le \pi$

(c) $0 < y < \pi$

- (b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (d) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- The number of all possible matrices of order 3×3 with each Q.4. entry 0 or 1 is:
 - (a) 27
- (b) 18
- (c) 81
- (d) 512
- Q.5. The second order derivative of $\log x$ is:
- (a) $\frac{1}{x}$ (b) $\frac{1}{x^2}$ (c) $-\frac{1}{x^2}$
- (d) None of these

(1)

(1)

(1)

Q.6. The rate of change of the area of the circle with respect to its Radius r = 6 cm is:

	(a) 10π cm (b)	o) 12π cm	(c) 8πcm	(d) 11π cm	
Q.7.	The approximate c caused by increasi			ube of side x meters	(1)
	(a) $0.09 \ x^3 m^3$ (b)	$0.9 \ x^3 m^3$	(c) $0.06 x^3 n$	n^3 (d) $0.6 x^3 m^3$	
Q.8.	$\int e^x s \cdot (1 + t \epsilon)$	d equals to:			(1)
	(a) $e^x c + C$ (b)	$e^x s + C$	(c) $e^x s +$	C (d) $e^x t \iota + C$	
Q.9.	Area lying betweer	the curves y	$^{2} = 4x \text{ and y} =$	= 2x is:	(1)
	(a) $\frac{2}{3}$ (b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{3}{4}$		
Q.10.	The order of the dif $2x^2 \frac{d^2y}{dx^2} - 3 \frac{d}{d} + y =$	•	ition		(1)
	(a) 2 (b)	1 (c)	0 (d)	not defined	
Q.11.	The integrating fact $x \frac{d}{d} - y = 2x^2$ is:	tor of the diffe	rential equati	on	(1)
	(a) e^{-x} (b) e^{-x}	^{-у} (с) х	(d) $\frac{1}{x}$		
Q.12.	If $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} $, The	en θ =?			(1)
	(a) $\frac{\pi}{4}$ (b) () (c) π	(d) $\frac{\pi}{2}$		
Q.13.	Direction cosines of	of z- axis are:			(1)
	(a) 0,1,0 (b)	1,0,0 (c) 0,	0, 1 (d) N	l <mark>one of the</mark> se	
Q.14.	4. Distance of the plane $2x - y + 2z + 3 = 0$ from the point $(3, -2, 1)$ is:				(1)
	(a) $\frac{3}{1}$ (b) $\frac{1}{3}$	(c) 0	(d) 1:	3	
Q.15.	The probability of obtaining an even prime number on each die, when a pair of dice is rolled is:				(1)
	(a) $\frac{1}{3}$ (b) $\frac{1}{3}$	(c) $\frac{1}{3}$	- (d) C)	
Q.16.	If A and B are ever	nts such that F	P(A/B) = P(B/A)	A),Then:	(1)
	(a) A B but A E	B (b) A =	B (c) /	A B = (d) P(A)	= P(B)

Q.17. Find gof and fog, if
$$f(x) = |x| \text{ and } g(x) = |5x - 2|$$
 Q.18. Using elementary transformations, find the inverse of (3)

(3)

(3)

$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

Q.19. Using the properties of the determinants, show that

$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix} = k^2 (3y+k)$$

Q.20. Find the value of k so that the function f defined by (3)

$$f(x) = \begin{cases} k + 1, i \mid x & \pi \\ \cos x, i \mid x > \pi \end{cases}$$
 is continuous at point $x = \pi$

Q.21. Evaluate
$$x l c 2x d$$
 (3)

Q.22. By using the properties of the definite integrals, evaluate (3)

$$\frac{\pi}{2} \frac{c_1 - 5x}{s_1 - 5x + c_1 - 5x} d$$

Q.23. Solve the differential equation:

$$(x^2 - y^2)d + 2xy d = 0$$
OR

Solve the differential equation:

$$x \log x \frac{d}{d} + y = \frac{2}{x} \log x$$

- Q.24. Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black. (3)
- Q.25. Find the probability distribution of number of tails in the simultaneous tosses of 3 coins. (3)

OR

Find the probability of getting 5 exactly twice in 7 throws of a die.

$$\tan^{-1}\frac{2}{1} + \tan^{-1}\frac{7}{2} = \tan^{-1}\frac{1}{2}$$

OR

Express $\tan^{-1}\left(\frac{x}{a^2-x^2}\right)$, |x| < a in the simplest form:

Q.27. Differentiate $\sin\{\tan^{-1}(e^x)\}\$ with respect to x. (4)

OR

If
$$y^x = x^y$$
, find $\frac{d}{d}$

Q.28. Find the area of a parallelogram whose adjacent sides are determined by the vectors.(4)

$$\vec{a} = i - j + 3\hat{k}$$
 and $\vec{b} = 2i - 7j + \hat{k}$

Q.29. Solve the system of linear equations, using matrix method. (5)

$$x - y + z = 4$$

 $2x + y - 3z = 0$
 $X + y + z = 2$

Q.30. Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.

OR

Find the equation of tangent and normal to the parabola

$$y^2 = 4ax$$
 at point $(at^2, 2at)$

Q.31. Find the area of the region bounded by the ellipse (5)

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

OR

Using integration find the area of region bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2)

Q.32. Find the shortest distance between the lines

(5)

(5)

$$\vec{r} = (i + 2j + \hat{k}) + (\hat{i} - j + \hat{k})$$

 $\vec{r} = (2i - j - \hat{k}) + \mu(2\hat{i} + j + 2\hat{k})$

OR

Find the equation of plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and passes through the point (2, 2, 1).

Q.33. Solve the following linear programming problem (LPP) graphically: Maximize Z = 5x + 3y subject to the constraints (5)

$$3x + 5y 15$$

 $5x + 2y 10$
 $x 0$
 $y 0$

