	Class: XII SESSION:2023-2024 MARKING SCHEME HBSESAMPLEQUESTIONPAPER(THEORY) SUBJECT:PHYSICS	
Q.no		Marks
	SECTIONA	
1	(iv)ZERO	1
2	(iv)Potentialdifferenceappliedacrosstheconductor	1
3	(ii)materialAis germaniumandmaterialBiscopper	1
4	(ii)lowresistances	1
5	(i)decreases	1
6	(ii) increases	1
7	(iv)none	1
8	(iv)Both electric and magnetic field vectors are parallel to eachother.	1
9	(ii)betweenf and2f,betweenopticalcenterandf	1
10	(i)decreases	1
11	(iii) $3000 \AA$	1
12	(iv) $4.77 \times 10^{-10} \mathrm{~m}$	1
13	(ii) Thenuclearforceismuchweakerthanthe Coulombforce.	1
14	(ii)convexlensoffocallength10metre	1
15	(d)Both A and R is incorrect	1
16	c)AistruebutR isfalse	1
17	a)Both AandR aretrueandRIsthecorrectexplanationofA	1
18	c)Ais true butRisfalse	1
	SECTIONB	
19	λ_{1}-Microwave $\lambda_{2} \quad$ ultraviolet	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20	A diamagneticB-paramagnetic	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
21	The magnetic field at any point due to an element of a conductor carrying current is (1) directly proportional to (a) the strength of the current i (b) length of the element dl (c) sine of the angle θ between the element in the direction of current (2) inversely proportional to the square of the distance r of the point OR Ampere's circuital law states that "the line integral of the magneticfield surrounding closed-loop equals to the number of times thealgebraicsumofcurrentspassing throughtheloop."	2

22	Moving coil galvanometers work on the principle that a current-carrying coil experiences torque when placed in a magnetic field. Asthe electric current is passed through the coil, a torque acts on it,which deflectsthe coil.	2
23	The masses are in the ratio $\mathrm{m}_{\mathrm{p}}: \mathrm{m}_{\mathrm{d}}: \mathrm{m}_{\alpha}=1: 2: 4$ As the momentum is same we get the velocity in the ratio $\mathrm{v}_{\mathrm{p}}: \mathrm{v}_{\mathrm{d}}: \mathrm{v}_{\alpha}=4: 2: 1$ For a charged particle in uniform magnetic field, we can write, $\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{Bqv}$ If $+e$ is the charge on proton, then charge on deutron is also $+e$ and charge on alpha particle is +2 e . Thus charges are in the ratio $\mathrm{q}_{\mathrm{p}}: \mathrm{q}_{\mathrm{d}}: \mathrm{q}_{\alpha}=1: 1: 2$ For a proton, a deutron and an alpha-particle are moving with same momentum in a uniform magnetic field $\mathrm{f}_{\mathrm{p}}: \mathrm{f}_{\mathrm{d}}: \mathrm{f}_{\alpha}=\mathrm{eBv}: \mathrm{eBv}: 2 \mathrm{eBv}$ As B is same we get $\mathrm{f}_{\mathrm{p}}: \mathrm{f}_{\mathrm{d}}: \mathrm{f}_{\alpha}=2: 1: 1$	1/2
24	$\begin{aligned} & \text { Angularwidth } 2 \varphi=2 \lambda / \mathrm{dGiven} \\ & \lambda=6000 \AA, \mathrm{~d}=2 \times 10^{-2} \\ & =2 \times 6000 / 2 \times 10^{-2} \\ & =600000 \AA \end{aligned}$	1
25	The minimum distance between the centre of the nucleus and the alpha particle just before it gets reflected back through 180° is defined as the distance of closest approach ro (also known as contact distance). $\mathrm{r}_{0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{Ze}^{2}}{\frac{1}{2} \mathrm{mv}_{0}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{Ze}^{2}}{\mathrm{E}_{\mathrm{k}}}$ OR Rutherford's alpha (α) particles scattering experiment' resulted into the discovery of nucleus of an atom. That is, during his experiment, he found that, most space of an atom is empty, and he could find a small positively charged center in an atom which is called as the nucleus.	1
	- SECTIONC	

$\mathbf{2 6}$	Surface charge density of plate $\mathrm{A}=+17.7 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$ Surface charge density of plate $\mathrm{B}=-17.7 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$ (a) In the outer region of plate I, electric field intensity E is zero. (b) Electric field intensity E in between the plates is given by relation $E=\frac{\sigma}{\epsilon_{0}}$ Where, $\epsilon_{0}=$ Permittivity of free space $=8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-2}$ $\therefore E=\frac{17.7 \times 10^{-22}}{8.85 \times 10^{-1}}$	1		
Therefore, electric field between the plates is $2.0 \times 10^{-10} \mathrm{~N} / \mathrm{C}$.			\quad	27
:---				

\begin{tabular}{|c|c|c|}
\hline 30 \& \begin{tabular}{l}
First Postulate: Electron revolves round the nucleus in discrete circular orbits called stationary orbits without emission of radiant energy. These orbits are called stable orbits or non-radiating orbits. \\
Second Postulate: Electrons revolve around the nucleus only in orbits in which their angular momentum is an integral multiple of \(\mathrm{h} / 2 \pi\). \\
Third Postulate: When an electron makes a transition from one of its nonradiating orbits to another of lower energy, a photon is emitted having energy equal to the energy difference between the two states. The frequency of the emitted photon is then given by, \(v=\frac{E_{i}-E_{f}}{h}\)
\end{tabular} \& 1
1
1 \\
\hline \& SECTION- D \& \\
\hline 31 \& \begin{tabular}{l}
\(\mathrm{p}-\mathrm{n}\) junction diode allows electric charges to flow in one direction, but not in the opposite direction; negative charges (electrons) can easily flow through the junction from \(n\) to \(p\) but not from p to n , and the reverse is true for holes. \\
The processes that follow after forming a P-N junction are of two types - diffusion and drift. There is a difference in the concentration of holes and electrons at the two sides of a junction. The holes from the p -side diffuse to the n -side, and the electrons from the \(n\)-side diffuse to the p -side \\
Drift is the process of movement of charge carriers due to the net electric field. In a pn-junction with no external source, electric field is from \(n\)-side to \(p\)-side and hence electrons drift from p -side to n -side. \\
OR
\end{tabular} \& 2

1.5

1.5 \\
\hline
\end{tabular}

(i) Given, angle of minimum deviation, $\boldsymbol{\delta}_{m}=30^{\circ}$

Angle of prism, $A=60^{\circ}$
By prism formula, reflected index
$\mu=\frac{\sin \frac{\delta_{m}+A}{2}}{\sin A / 2}=\frac{\sin \frac{30^{\circ}+60^{\circ}}{2}}{\sin 30^{\circ}}=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}$
$=\frac{1}{\sqrt{2}} \times 2=\sqrt{2}$
Also, $\mu=\frac{\text { speed of light in vaccum (c) }}{\text { speed of light in prism (v) }}$
$\Rightarrow \nu=c / \mu=\left(3 \times 10^{8} / \sqrt{2}\right) \mathrm{m} / \mathrm{s}$
Hence, speed of light through prism is
$\left(3 \times 10^{8} / \sqrt{2}\right) \mathrm{m} / \mathrm{s}$
(ii) Critical angle i_{c} is given as,

$$
\begin{array}{rlrl}
\sin i_{c} & =\frac{1}{\sqrt{2}} \quad\left[\because \sin i_{c}=\frac{1}{\mu}\right] \\
\Rightarrow \quad i_{c} & =45^{\circ} \\
\Rightarrow \quad A & =r+i_{c}=60^{\circ} \\
r & =60^{\circ}-45^{\circ}=15^{\circ} \\
\Rightarrow \quad \frac{\sin i}{\sin r} & =\sqrt{2} \quad \text { (using Snell's law) } \\
\sin i & =\sqrt{2} \sin r=\sqrt{2} \times \sin 15^{\circ} \\
& & & =\sin ^{-1}\left(\sqrt{2} \sin 15^{\circ}\right)
\end{array}
$$

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{34 a)} \& $\mathrm{q}=\mathrm{Ne}$...(1) \& \multirow[t]{5}{*}{1

1} \\
\hline \& where, N is number of electrons present on the body, e is the charge on ar electron \& \\
\hline \& Step 2: Substitute the values \& \\
\hline \& $-1 \times 10^{-9} \mathrm{C}=-1.6 \times 10^{-19} \mathrm{C} \times \mathrm{N}$ \& \\

\hline \& $$
\mathrm{N}=\frac{10^{-9}}{1.6 \times 10^{-19}}=6.25 \times 10^{9} \text { electrons } .
$$ \& \\

\hline (b) \& Scalar \& \\
\hline \multirow{5}{*}{(c)} \& Charge, $\mathrm{Q}=3.2 \times 10^{-7} \mathrm{C}$ \& \\
\hline \& Charge on the electron, $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ \& \\
\hline \& Therefore, \& \\
\hline \& Number of electron transferred is given by, \& \multirow[t]{2}{*}{2} \\
\hline \& Defination of Charge. \& \\
\hline 35a \& Self-inductance is the tendency of a coil toresist changes in current in itself \& 1 \\
\hline \multirow[t]{6}{*}{b)} \& Selfinductancedependson- \& \multirow[t]{7}{*}{1} \\
\hline \& 1-Sizeofcoil \& \\
\hline \& 2-Shapeofthecoil \& \\
\hline \& 3-Materialofthecoil \& \\
\hline \& 4-Medim \& \\
\hline \& \because Induced emf, $e=-\frac{d i}{d t}$ \& \\
\hline \multirow[t]{3}{*}{c)} \& Given, $\mathrm{L}=10 \mathrm{H}, \Delta i=9-4=5 \mathrm{~A}, d t=0.2 \mathrm{~s}$ emf, $e=10 \times \frac{5}{0.2}=250 \mathrm{~V}$ \& \\
\hline \& OR \& \multirow[t]{2}{*}{2} \\
\hline \& Statement of Lenz's Law. \& \\
\hline
\end{tabular}

