Class: XIISESSION:2023-2024

HBSE SAMPLEQUESTIONPAPER(THEORY)
 SUBJECT:PHYSICS

MaximumMarks:70Marks
TimeAllowed:3hours.

GeneralInstructions:

(1) There are 35 questionsin all. Allquestionsarecompulsory
(2) This question paper has five sections: Section A, Section B, Section C, SectionDandSection E.Allthese Sections arecompulsory.
(3) Section A contains eighteen MCQ of1 mark each, Section B contains sevenquestions of two marks each, Section C contains five questions of three markseach, section D contains three long questions of five marks each and Section Econtainstwocase studybased questions of4marks each.
(4) There is no overall choice. However, an internal choice has been provided insection B, C, D and E. You have to attempt only one of the choices in suchquestions.
5.Useofcalculatorsis not allowed.

SECTIONA

$\begin{aligned} & \text { Q. } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { MAR } \\ & \text { KS } \end{aligned}$
1	The electric potential on the axis of an electric dipole at adistance'rfrom it'scentre is V . Then the potential at a pointatthesamedistanceonits equatorial linewill be (i) 2 V (ii) -V (iii) $\mathrm{V} / 2$ (iv) Zero	1
2	Resistanceof conductordoes notdependon (i) Length ofconductor (ii) Natureofmaterial (iii) Radiusofcross sectionofconductor (iv) Potentialdifferenceapplied acrosstheconductor	1

3	The temperature (\mathbf{T}) dependence of resistivity of materials Aand material \mathbf{B} is represented by fig(i) and fig (ii) respectively.IdentifymaterialAandmaterial B. fig. (i) fig. (ii) (i) material Aiscopperandmaterial Bisgermanium (ii) material Aisgermaniumandmaterial Biscopper (iii) material Aisnichrome and materialBis germanium material Aiscopperandmaterial Bisnichrome	1
4	Wheatstonebridgecannot beused formeasuring ofvery \qquad resistances (i) high (ii) low (iii) lowor high (iv) mediumvalue	1
5	If the magnetizing field on a ferromagnetic materialisincreased, its permeability (i) decreases (ii) increases (iii) remainsunchanged (iv) firstdecreasesandthen increases	1
6	An iron cored coil is connected in series with an electric bulbwith an AC source as shown in figure. When iron piece istakenout ofthecoil,thebrightnessof thebulbwill (i) decrease (ii) increase (iii) remainunaffected (iv) fluctuate	1

7	A ray of light passing from air through an equilateral glassprism undergoes minimum deviation when the angle ofincidence is $3 / 4$ of the angle of prism. speed of light in theprismis. i) c ii) $\mathrm{c} / 2$ iii) $\mathrm{c} / 4$ (iv) none	1
8	Which of the following statement is NOT true about thepropertiesof electromagneticwaves? (I)These waves do not require any material medium for theirpropagation (ii) Both electric and magnetic field vectors attain the maxima andminimaat thesametime (iii) The energy in electromagnetic wave is divided equally betweenelectricand magneticfields iv) Both electricand magnetic field vectors areparalleltoeachother	1
9	In two positions convex lens produces magnified image of givenobject.Thepositions are i) At $f, a t 2 f$ ii) Betweenf and2f,between opticalcenter andf iii) Beyond2f, betweenc and f iv) At2f,betweenopticalcentreandf	1
10	If Young's double slit experiment is immersed in water, thenfringewidth (i) decreases (ii) increases(iii)remainsame (iv)none	1
11	The work function for metal surface is 4.14 eV . The thresholdwavelengthfor thismetal surfaceis: (i) $4125 \AA$ (ii) $2062.5 \AA$ (iii) $3000 \AA$ (iv) $6000 \AA$	1

12	The radius of the inner most electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$.Theradiusof then=3orbitis i) $\quad 1.01 \times 1^{-10} \mathrm{~m}$ ii) $\quad 1.59 \times 10^{-1} \mathrm{~m}$ iii) $\quad 2.12 \times 10^{-10} \mathrm{~m}$ iv) $\quad 4.77 \times 10^{-10} \mathrm{~m}$		1	
13	Whichof thefollowing statementsaboutnuclear forces is nottr (i) The nuclear force between two nucleons falls rapidly to ze astheirdistanceis more than afewfemtometers. (ii) Thenuclearforceismuchweakerthan theCoulomb force. (iii) The force is attractive for distances larger than 0.8 fm andrepulsiveif theyareseparated bydistancesless than 0.8 fm . (iv)Then nuclear force between neutron-neutron, protonneutron andproton-protonis approximatelythesame.			1
14	Poweroflens is $\mathbf{1 0}$ diopters, which of following is correct (i) Convexlensoffocallength10metre (ii) Convex lens of focallength 10 cm (iii) Concavelensoffocallength10metre (iv) Concave lens of focallength 10 cm			1
	Twostatementsaregiven-onelabeled ion(A)and the other labeled Reason(R). Select the t answer tothesequestions fromthecodes (a),(b),(c) asgivenbelow. hAand Rare trueandRisthecorrectexplanation of A A and R are true and R is NOT the correct explanation ofA true but R is false false and R is also false Assertion : A p-type semiconductors is a positive type crystal. n : A p- type semiconductor is an uncharged crystal.	1		

16.	ASSERTION(A): Theelectrical conductivityof asemiconductorincreasesondoping. REASON (R) : increases the number of electrons in Dopingalways thesemiconductor.	
17	Twostatementsaregiven-onelabeled Assertion (A) and the other labelled Reason (R). Select thecorrectanswer to these questions fromthecodes (a),(b),(c)and (d)asgivenbelow. a) Both Aand Raretrueand Risthe correctexplanation ofA b) Both Aand Raretrueand Ris NOTthe correctexplanationofA c) Aistruebut Ris false d) Aisfalseand Ris also false	
ASSERTION: In an interference pattern observed in Young's double slitexperiment, if the separation (d) between coherent sources as well asthedistance (D) of the screen from the coherent sources both are reduced to1/3rd.,thennewfringewidth remainsthe same. REASON: Fringewidthisproportionalto(d/D).	1	
18	Two statements are given-one labeled Assertion (A) and Reason(R): Theother labelled Reason (R). Select the correct answer to thesequestions from the codes (a), (b), (c) and (d) as given islostin collision withthe other atoms inthemetal.	1
below.a)BothAandRare true andRisthecorrect explanationof A		
b) Both Aand RaretrueandRisNOTthecorrect explanation ofA		
b) Aistruebut Ris false		
d) Ais falseand Risalso false		
Assertion(A):		

SECTIONB

19	Electromagneticwaveswith wavelength (i) $\quad \lambda 1$ is suitable for radar systems used in air craftnavigation. (ii) $\lambda 2$ isusedtokillgermsinwaterpurifiers. Identify and name the part of the electromagnetic spectrum towhichthese radiations belong.	2
20	A uniform magnetic field gets modified as shown in figurewhentwospecimensAandBareplaced init. (a) (b) Identifythe specimenAandB.	2
21	State biot savarts law.?OR Stateamperescircuitallaw	2
22	Stateworkingprincipleofmovingcoilgalvanometer?	2
23	A proton, deutron and alpha particle enter with same momentumperpendicular to same magnetic field. What is The ratio of radii ofproton, deutron and alphaparticle	2
24	A narrow slit is illuminated by a parallel beam of monochromaticlight of wavelength λ equal to $6000 \AA$, separation between the slitis 2 cm . whatis the angular width of the central maxima.	2
25.	Define distance of closest approach in Rutherford alpha scatteringexperiment. Writemathematical formula. OR Explain Rutherford alpha scattering experiment.	2

	SECTIONC	
26.	Two large, thin metal plates are parallel and close to each other.On their inner faces, the plates have surface charge densities ofopposite signs and of magnitude $17.7 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$. What is electricfieldintensityE: (a) intheouter regionofthefirstplate,and (b) betweentheplates?	3
27	Statelawsofphotoelectric effect?	3
28	Explaintheprocessesofnuclearfissionandnuclearfusionbyusingtheplotofbin dingenergypernucleon(BE/A)versusthemassnumberA.	3
29	An a.c. source generating a voltage $\varepsilon=\mathrm{E}_{0}$ sin ωt is connected to acapacitor of capacitance C .Find the expression for the current Iflowing through it. Plot a graph of ε and I versus ωt to show thatthecurrent isahead ofthevoltage by $\pi / 2$. OR	3
30.	An ac voltage $V=V_{0}$ sin ωt is applied across a pure inductor ofinductance L. Find an expression for the current i, flowing in thecircuit and show mathematically that the current flowing through itlags behind the applied voltage by a phase angle of $\pi / 2 . . A l s o$ drawgraphsof V and $/ v e r s u s ~$ dforthecircuit.	WriteBohr'spostulatesforthehydrogenatommodel.

SECTIOND

31

$$
\begin{aligned}
& \text { What is } \mathrm{p} \mathrm{n} \text { junction diode. Explain the process involved } \\
& \text { information of } \mathrm{p} \mathrm{n} \text { junction diode with the help of } \\
& \text { suitablediagram } \\
& \text { OR } \\
& \text { Explain principle and working of } \mathrm{p} n \text { junction diode in } \\
& \text { fullwave rectifier? }
\end{aligned}
$$

32	(a) Explain the term drift velocity of electrons in a conductor.Hence obtain the expression for the current through aconductorin terms ofdrift velocity. (b) Twocellsofemfs $E 1$ and $E 2$ andinternalresistances r_{1} and r_{2} respectivelyareconnectedinparallel asshown inthefigure. Deducetheexpression forthe (i) Equivalentemfof thecombination (ii) equivalentinternalresistanceofthecombination (iii) potentialdifferencebetweenthe points A and B. (a) State the two Kirchhoff's rules used in thenanalysisofelectriccircuitsandexplainthem (b) Derivethe equationofthebalanced stateina WheatstonebridgeusingKirchhoff'slaws.	5
33	a) Prove prism formula b) ArayPQisincidentnormallyontheface AB ofa	5

| triangularprismofrefractingangle 60^{0} asshowninfigure.The
 prism is made of a transparent material ofrefractive
 index2 $/ \sqrt{3}$. Trace the path of the ray as it passesthrough
 the prism. Calculate the angle of emergence
 andtheangleofdeviation. | |
| :---: | :--- | :--- |
| (i) A ray of light incident on face AB of an
 equilateralglass prism, shows minimum deviation of
 30 0° Calculatethe speed oflight through theprism.
 (ii)FindtheangleofincidenceatfaceABsothattheEmerg
 entraygrazesalong thefaceAC. | |

SECTIONE

34	CaseStudy: Readthefollowing paragraphandanswerthequestions. Smallest charge that can exist in nature is the charge of anelectron. During friction it is only the transfer of electron which makesthe body charged. Hence net charge on any body is an integral multipleofcharge of an electron $\left(1.6 \times 10^{-19} \mathrm{C}\right)$ i.e., $q= \pm$ ne where $r=1,2,3,4 \ldots$. Hence no body can have a charge represented as $1.8 \mathrm{e}, 2.7 \mathrm{e}, 2 \mathrm{e} / 5$, etc.Recently, it has been discovered that elementary particles such asprotonsor neutrons are elemental unitscalledquarks I) Ifachargeonabodyis1nC,thenhowmanyelectronsarepresen t onthebody? II) Chargeis scalarorvector? III) Apolythenepiecerubbedwithwoolisfoundtohavea negativechargeof $3.2 \times 10^{-}$ ${ }^{7}$ C.Calculatethenumberofelectronstransferred. OR What is charge?	4

