Paper 1

Mathematics						
	SECTION 1 (Maximum Marks: 12)					
•	This section contains THREE (03) questions.					
•	Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four					
	option(s) is(are) correct answer(s).					
•	For each question, choose the option(s) corresponding to (all) the correct answer(s).					
•	Answer to each question will be evaluated according to the following marking scheme:					
	Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;					
	<i>Partial Marks</i> : +3 If all the four options are correct but ONLY three options are chosen;					
	<i>Partial Marks</i> : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;					
	<i>Partial Marks</i> : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;					
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);					
	Negative Marks : -2 In all other cases.					
٠	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct					
	answers, then					
	choosing ONLY (A), (B) and (D) will get +4 marks;					
	choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks;					
	choosing ONLY (B) and (D) will get +2 marks;					
	choosing ONLY (A) will get +1 mark;					
	choosing ONLY (B) will get +1 mark;					
	choosing ONLY (D) will get +1 mark;					
	choosing no option (i.e. the question is unanswered) will get 0 marks; and					
	choosing any other combination of options will get -2 marks.					

- Q.1 Let $S = (0,1) \cup (1,2) \cup (3,4)$ and $T = \{0,1,2,3\}$. Then which of the following statements is(are) true?
 - (A) There are infinitely many functions from S to T
 - (B) There are infinitely many strictly increasing functions from S to T
 - (C) The number of continuous functions from S to T is at most 120
 - (D) Every continuous function from S to T is differentiable

Q.2

(A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units

which of the following statements is(are) true?

- (B) The area of the quadrilateral $A_1A_2A_3A_4$ is 36 square units
- (C) The tangents T_1 and T_2 meet the x-axis at the point (-3,0)
- (D) The tangents T_1 and T_2 meet the x-axis at the point (-6,0)

Q.3

Let $f:[0,1] \rightarrow [0,1]$ be the function defined by $f(x) = \frac{x^3}{3} - x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0,1] \times [0,1]$. Let $G = \{(x, y) \in S : y > f(x)\}$ be called the green region and $R = \{(x, y) \in S : y < f(x)\}$ be called the red region. Let $L_h = \{(x,h) \in S : x \in [0,1]\}$ be the horizontal line drawn at a height $h \in [0,1]$. Then which of the following statements is(are) true?

(A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h (B) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h (D) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h

(D) There exists an $h \in \left\lfloor \frac{1}{4}, \frac{2}{3} \right\rfloor$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h

SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.

Answer to each	qı	lesti	on will be evaluated according to the following marking scheme:
Full Marks	:	+3	If ONLY the correct option is chosen;
Zero Marks	:	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	:	-1	In all other cases.

Q.4 Let $f:(0,1) \to \mathbb{R}$ be the function defined as $f(x) = \sqrt{n}$ if $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ where $n \in \mathbb{N}$. Let $g:(0,1) \to \mathbb{R}$ be a function such that $\int_{x^2}^x \sqrt{\frac{1-t}{t}} dt < g(x) < 2\sqrt{x}$ for all $x \in (0,1)$. Then $\lim_{x \to 0} f(x)g(x)$ (A) does **NOT** exist (B) is equal to 1 (C) is equal to 2 (D) is equal to 3

Q.5 Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \in \{0, 1\}\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1,\ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1,\ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is

(A)
$$\frac{1}{\sqrt{6}}$$
 (B) $\frac{1}{\sqrt{8}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{12}}$

Q.6

Let $X = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x \right\}$. Three distinct points *P*, *Q* and *R* are

randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is

(A)
$$\frac{71}{220}$$
 (B) $\frac{73}{220}$ (C) $\frac{79}{220}$ (D) $\frac{83}{220}$

Q.7 Let P be a point on the parabola $y^2 = 4ax$, where a > 0. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a,m) is

(A) (2,3) (B) (1,3) (C) (2,4) (D) (3,4)

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:
 - *Full Marks* : +4 If **ONLY** the correct integer is entered;
 - Zero Marks : 0 In all other cases.

Q.8 Let
$$\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1 + \cos(2x)} = \sqrt{2} \tan^{-1}(\tan x)$ in the set $\left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ is equal to

Q.9 Let $n \ge 2$ be a natural number and $f:[0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

If *n* is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function *f* is

Q.10 Let
$$75\cdots 57$$
 denote the $(r+2)$ digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum $S = 77 + 757 + 7557 + \dots + 75\cdots 57$. If $S = \frac{75\cdots 57 + m}{n}$, where m and n are natural numbers less than 3000, then the value of $m+n$ is

Q.11 Let $A = \left\{ \frac{1967 + 1686i \sin \theta}{7 - 3i \cos \theta} : \theta \in \mathbb{R} \right\}$. If A contains exactly one positive integer n, then the value of n is

Q.12 Let *P* be the plane
$$\sqrt{3}x + 2y + 3z = 16$$
 and let

$$S = \left\{ \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the distance of } (\alpha, \beta, \gamma) \text{ from the plane } P \text{ is } \frac{7}{2} \right\}.$$
Let \vec{u}, \vec{v} and \vec{w} be three distinct vectors in *S* such that $|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$. Let *V* be the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and \vec{w} . Then the value of $\frac{80}{\sqrt{3}}V$ is

Q.13 Let *a* and *b* be two nonzero real numbers. If the coefficient of
$$x^5$$
 in the expansion of $\left(ax^2 + \frac{70}{27bx}\right)^4$ is equal to the coefficient of x^{-5} in the expansion of $\left(ax - \frac{1}{bx^2}\right)^7$, then the value of 2*b* is

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks: +3ONLY if the option corresponding to the correct combination is chosen;Zero Marks:0If none of the options is chosen (i.e. the question is unanswered);Negative Marks:-1In all other cases.

Q.14 Let α, β and γ be real numbers. Consider the following system of linear equations

x+2y+z=7 $x+\alpha z=11$ $2x-3y+\beta z=\gamma$

Match each entry in List-I to the correct entries in List-II.

List-I

(P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the (1) a unique solution system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the (2) no solution system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and (3) infinitely many solutions $\gamma \neq 28$, then the system has (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and (4) x = 11, y = -2 and z = 0 as a solution $\gamma = 28$, then the system has (5) x = -15, y = 4 and z = 0 as a solution

List-II

The correct option is:

(A) $(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (1)$	$(S) \rightarrow (4)$
(B) $(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (5)$	$(S) \rightarrow (4)$
(C) $(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \rightarrow (5)$
(D) $(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (1)$	$(S) \rightarrow (3)$

Q.15 Consider the given data with frequency distribution

X_i	3	8	11	10	5	4
f_i	5	2	3	2	4	4

Match each entry in List-I to the correct entries in List-II.

(P) The mean of the above data is	(1) 2.5
(Q) The median of the above data is	(2) 5
(R) The mean deviation about the mean of the	(3) 6
above data is	
(S) The mean deviation about the median of	(4) 2.7
the above data is	
	(5) 2.4

The correct option is:

(A) $(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (4)$	$(S) \rightarrow (5)$
(B) $(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (1)$	$(S) \rightarrow (5)$
(C) $(P) \rightarrow (2)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (4)$	$(S) \rightarrow (1)$
(D) $(P) \rightarrow (3)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (5)$	$(S) \rightarrow (5)$

Q.16 Let ℓ_1 and ℓ_2 be the lines $\vec{r_1} = \lambda(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r_2} = (\hat{j} - \hat{k}) + \mu(\hat{i} + \hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_1 . For a plane H, let d(H) denote the smallest possible distance between the points of ℓ_2 and H. Let H_0 be a plane in X for which $d(H_0)$ is the maximum value of d(H) as H varies over all planes in X.

Match each entry in List-I to the correct entries in List-II.

List-I	List-II
(P) The value of $d(H_0)$ is	(1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from H_0 is	(2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from H_0 is	(3) 0
(S) The distance of origin from the point of intersection of planes $y = z$, $x = 1$ and H_0 is	(4) $\sqrt{2}$
	(5) $\frac{1}{\sqrt{2}}$

The correct option is:

(A) $(P) \rightarrow (2)$	$(Q) \rightarrow (4)$	$(R) \rightarrow (5)$	$(S) \rightarrow (1)$
(B) $(P) \rightarrow (5)$	$(Q) \rightarrow (4)$	$(R) \rightarrow (3)$	$(S) \rightarrow (1)$
(C) $(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (3)$	$(S) \rightarrow (2)$
(D) $(P) \rightarrow (5)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \rightarrow (2)$

Q.17 Let z be a complex number satisfying $|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$, where \overline{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero.

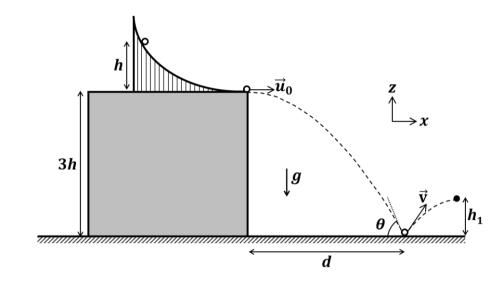
Match each entry in List-I to the correct entries in List-II.

List-I	List-II
(P) $ z ^2$ is equal to	(1) 12
(Q) $ z - \overline{z} ^2$ is equal to	(2) 4
(R) $ z ^2 + z + \overline{z} ^2$ is equal to	(3) 8
(S) $ z+1 ^2$ is equal to	(4) 10
	(5) 7

The correct option is:

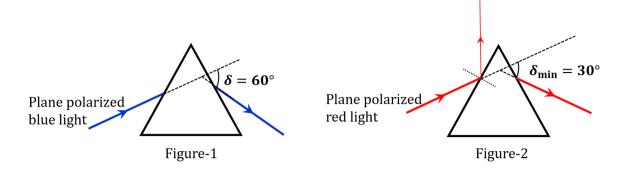
(A) $(P) \rightarrow (1)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (5)$	$(S) \rightarrow (4)$
(B) $(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (3)$	$(S) \rightarrow (5)$
(C) $(P) \rightarrow (2)$	$(Q) \rightarrow (4)$	$(R) \rightarrow (5)$	$(S) \rightarrow (1)$
(D) $(P) \rightarrow (2)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (5)$	$(S) \rightarrow (4)$

END OF THE QUESTION PAPER


Physics

SECTION 1 (Maximum Marks: 12)

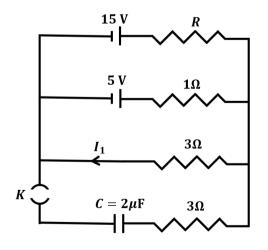
- This section contains **THREE (03)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:


: +4 **ONLY** if (all) the correct option(s) is(are) chosen; Full Marks *Partial Marks* : +3 If all the four options are correct but **ONLY** three options are chosen; *Partial Marks* : +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct: *Partial Marks* : +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); *Negative Marks* : -2 In all other cases. For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct • answers, then choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks; choosing ONLY (B) and (D) will get +2 marks; choosing ONLY (A) will get +1 mark; choosing ONLY (B) will get +1 mark; choosing ONLY (D) will get +1 mark; choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -2 marks.

Q.1 A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3h from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity \vec{v} and reaches a maximum height h_1 . The acceleration due to gravity is g and the coefficient of restitution of the ground is $1/\sqrt{3}$. Which of the following statement(s) is(are) correct?

(A)
$$\vec{u}_0 = \sqrt{2gh}\hat{x}$$

(B) $\vec{v} = \sqrt{2gh}(\hat{x} - \hat{z})$
(C) $\theta = 60^\circ$
(D) $d/h_1 = 2\sqrt{3}$


Q.2 A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{\min} = 30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?

- (A) The blue light is polarized in the plane of incidence.
- (B) The angle of the prism is 45°.
- (C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
- (D) The angle of refraction for blue light in air at the exit plane of the prism is 60°.

Q.3 In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time $t = t_0$. Which of the following statement(s) is(are) correct?

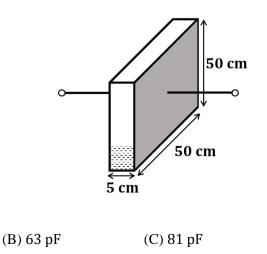
[Given: $e^{-1} = 0.36$]

- (A) The value of the resistance *R* is 3 Ω .
- (B) For $t < t_0$, the value of current I_1 is 2 A.
- (C) At $t = t_0 + 7.2 \,\mu$ s, the current in the capacitor is 0.6 A.
- (D) For $t \to \infty$, the charge on the capacitor is 12 μ C.

(A) 27 pF

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:


Full Marks: +3If ONLY the correct option is chosen;Zero Marks: 0If none of the options is chosen (i.e. the question is unanswered);Negative Marks: -1In all other cases.

Q.4 A bar of mass M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with 5.00 m s⁻¹ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct?

(A) $\omega = 6.98 \text{ rad s}^{-1}$ and $v = 4.30 \text{ m s}^{-1}$	(B) $\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$
(C) $\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 10.0 \text{ m s}^{-1}$	(D) $\omega = 6.80 \text{ rad s}^{-1} \text{ and } v = 4.10 \text{ m s}^{-1}$

Q.5 A container has a base of $50 \text{ cm} \times 5 \text{ cm}$ and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \text{ cm} \times 50 \text{ cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of $250 \text{ cm}^3 \text{ s}^{-1}$. What is the value of the capacitance of the container after 10 seconds?

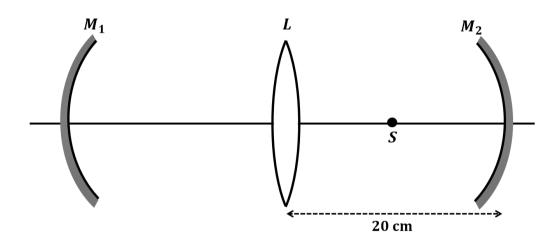
[Given: Permittivity of free space $\epsilon_0 = 9 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

(D) 135 pF

Q.6 One mole of an ideal gas expands adiabatically from an initial state (T_A, V_0) to final state $(T_f, 5V_0)$. Another mole of the same gas expands isothermally from a different initial state (T_B, V_0) to the same final state $(T_f, 5V_0)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ . What is the ratio T_A/T_B ?

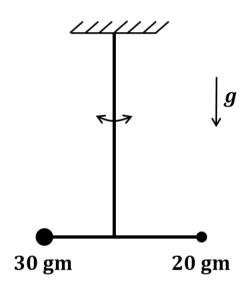
(A) $5^{\gamma-1}$ (B) $5^{1-\gamma}$ (C) 5^{γ} (D) $5^{1+\gamma}$

Q.7 Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_P and h_Q , respectively, where $h_P = R/3$. The accelerations of P and Q due to Earth's gravity are g_P and g_Q , respectively. If $g_P/g_Q = 36/25$, what is the value of h_Q ?


(A) 3R/5 (B) R/6 (C) 6R/5 (D) 5R/6

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:
 - *Full Marks* : +4 If **ONLY** the correct integer is entered;
 - Zero Marks : 0 In all other cases.
- Q.8 A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n = 4 to level n = 3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is _____.


[Given: hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum]

Q.9 An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm and 24 cm, respectively. The distance between L and M_2 is 20 cm. A point object S is placed at the mid-point between L and M_2 on the axis. When the distance between L and M_1 is n/7 cm, one of the images coincides with S. The value of n is _____.

Q.10 In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n %. The value of n is _____.

- Q.11 A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma = 5/3)$ and one mole of an ideal diatomic gas $(\gamma = 7/5)$. Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is ______ Joule.
- Q.12 A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s^{-1} , the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s^{-1}.
- Q.13 Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad⁻¹. The angular frequency of the oscillations in $n \times 10^{-3}$ rad s⁻¹. The value of *n* is _____.

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3ONLY if the option corresponding to the correct combination is chosen;Zero Marks: 0If none of the options is chosen (i.e. the question is unanswered);Negative Marks : -1In all other cases.

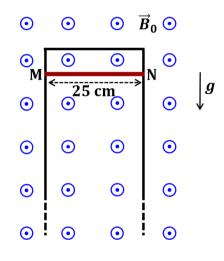
Q.14 List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

List-I	List-II
(P) $^{238}_{92}U \rightarrow ^{234}_{91}Pa$	(1) one α particle and one β^+ particle
(Q) $^{214}_{82}Pb \rightarrow ^{210}_{82}Pb$	(2) three β^- particles and one α particle
(R) $^{210}_{81}Tl \rightarrow ^{206}_{82}Pb$	(3) two β^- particles and one α particle
(S) $^{228}_{91}Pa \rightarrow ^{224}_{88}Ra$	(4) one α particle and one β^- particle
	(5) one α particle and two β^+ particles
(A) D , 4 O , 2 D , 2 C , 1	
(A) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1$	(B) $P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$ (D) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$
(C) $P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$	(D) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$

Q.15 Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.

[Given: Wien's constant as 2.9×10^{-3} m-K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V-m]

List-I	List-	·II
(P) 2000 K	(1)	The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV.
(Q) 3000 K	(2)	The radiation at peak wavelength is visible to human eye.
(R) 5000 K	(3)	The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
(S) 10000 K	(4)	The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K.
	(5)	The radiation at peak emission wavelength can be used to image human bones.
(A) $P \rightarrow 3, Q \rightarrow 5, R \rightarrow 2, S \rightarrow 3$		(B) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S \rightarrow 1$
(C) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 1$		(D) $P \rightarrow 1, Q \rightarrow 2, R \rightarrow 5, S \rightarrow 3$


Q.16

match each entry in List-I with an appropriate value from List-II and choose the correct option.

List-I		List-II
(P) I_0 in mA		(1) 44.4
(Q) The quality factor of the circuit		(2) 18
(R) The bandwidth of the circuit in rad s^{-1}		(3) 400
(S) The peak power dissipated at resonance in	Watt	(4) 2250
		(5) 500
(A) $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 5, S \rightarrow 1$	(B) $P \rightarrow 3$	$Q \rightarrow 1, R \rightarrow 4, S \rightarrow 2$
(C) $P \rightarrow 4, Q \rightarrow 5, R \rightarrow 3, S \rightarrow 1$	(D) $P \rightarrow 4$	$Q \rightarrow 2, R \rightarrow 1, S \rightarrow 5$

Q.17 A thin conducting rod MN of mass 20 gm, length 25 cm and resistance 10 Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4$ T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.

[Given: The acceleration due to gravity $g = 10 \text{ m s}^{-2}$ and $e^{-1} = 0.4$]

List-I

List-II

(P) At $t = 0.2$ s, the magnitude of the induced emf in Volt	(1) 0.07
(Q) At $t = 0.2$ s, the magnitude of the magnetic force in Newt	con (2) 0.14
(R) At $t = 0.2$ s, the power dissipated as heat in Watt	(3) 1.20
(S) The magnitude of terminal velocity of the rod in m s^{-1}	(4) 0.12
	(5) 2.00

(A) $P \rightarrow 5, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 1$	(B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$
(C) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 2$	(D) $P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 5$

END OF THE QUESTION PAPER

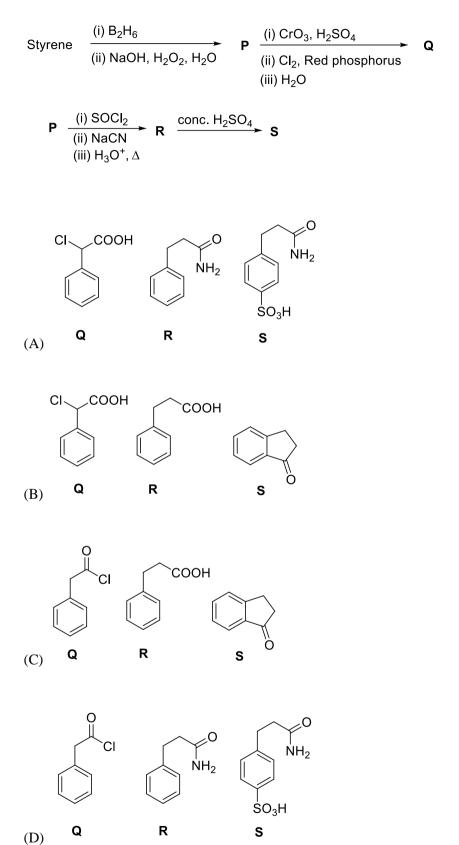
Chemistry

Chemistry	
SECTION 1 (Maximum Marks: 12)	
• This section contains THREE (03) questions.	
• Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four	
option(s) is(are) correct answer(s).	
• For each question, choose the option(s) corresponding to (all) the correct answer(s).	
 Answer to each question will be evaluated <u>according to the following marking scheme</u>: 	
Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;	
<i>Partial Marks</i> : $+3$ If all the four options are correct but ONLY three options are chosen;	
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;	
<i>Partial Marks</i> : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;	
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);	
Negative Marks : -2 In all other cases.	
• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then	
choosing ONLY (A), (B) and (D) will get +4 marks;	
choosing ONLY (A) and (B) will get $+2$ marks;	
choosing ONLY (A) and (D) will get $+2$ marks;	
choosing ONLY (B) and (D) will get +2 marks;	
choosing ONLY (A) will get +1 mark;	
choosing ONLY (B) will get +1 mark;	
choosing ONLY (D) will get +1 mark;	
choosing no option (i.e. the question is unanswered) will get 0 marks; and	
choosing any other combination of options will get -2 marks.	

- Q.1 The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Q.2 In the following reactions, **P**, **Q**, **R**, and **S** are the major products.

$$\begin{array}{c} \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{CH}(\mathsf{CH}_{3})\mathsf{CH}_{2}\mathsf{CN} & \overbrace{(i) \mathsf{PhMgBr, then H}_{3}O^{\textcircled{\oplus}}}^{(i) \mathsf{PhMgBr, then H}_{2}O} & \mathsf{P} \\ \\ & & \overset{\mathsf{O}}{\mathsf{Ph-H}} + \mathsf{CH}_{3}^{\mathsf{H}}\mathsf{CCI} & \overbrace{(i) \mathsf{anhyd. AlCl}_{3}}^{(i) \mathsf{anhyd. AlCl}_{3}} & \mathsf{Q} \\ \\ & & \overset{\mathsf{O}}{\mathsf{CH}_{3}\mathsf{CH}_{2}^{\mathsf{CCI}}} & \overbrace{(i) \frac{1}{2} (\mathsf{PhCH}_{2})_{2}\mathsf{Cd}}^{(i) \mathsf{PhMgBr, then H}_{2}O} & \mathsf{R} \\ \\ & & & \overset{\mathsf{O}}{\mathsf{(ii)} \mathsf{PhMgBr, then H}_{2}O} & \mathsf{R} \\ \\ & & & & & & \\ & & & & & \\ \mathsf{PhCH}_{2}\mathsf{CHO} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

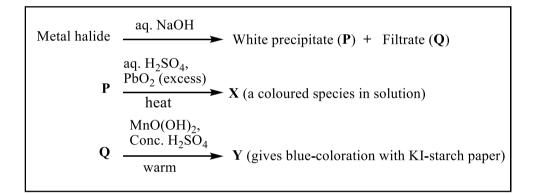

The correct statement(s) about **P**, **Q**, **R**, and **S** is(are)

(A) Both \mathbf{P} and \mathbf{Q} have asymmetric carbon(s).

(B) Both \mathbf{Q} and \mathbf{R} have asymmetric carbon(s).

(C) Both \mathbf{P} and \mathbf{R} have asymmetric carbon(s).

(D) \mathbf{P} has asymmetric carbon(s), \mathbf{S} does not have any asymmetric carbon.


Paper 1

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

```
Full Marks: +3If ONLY the correct option is chosen;Zero Marks: 0If none of the options is chosen (i.e. the question is unanswered);Negative Marks: -1In all other cases.
```

Q.4 In the scheme given below, **X** and **Y**, respectively, are

- (A) CrO_4^{2-} and Br_2 (B) MnO_4^{2-} and Cl_2 (C) MnO_4^{-} and Cl_2 (D) $MnSO_4$ and HOCl
- Q.5 Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $[\Lambda_{m} = \text{molar conductivity} \\ \Lambda_{m}^{o} = \text{limiting molar conductivity} \\ c = \text{molar concentration} \\ K_{a} = \text{dissociation constant of HX}]$

(A) $K_a \Lambda_m^o$ (B) $K_a \Lambda_m^o/2$ (C) $2 K_a \Lambda_m^o$ (D) $1 / (K_a \Lambda_m^o)$

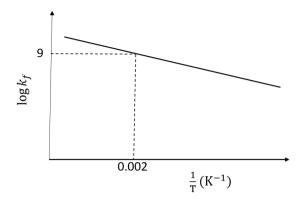
- Q.6 On decreasing the *p*H from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L⁻¹ to 10^{-3} mol L⁻¹. The *p*K_a of HX is
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 2
- Q.7 In the given reaction scheme, **P** is a phenyl alkyl ether, **Q** is an aromatic compound; **R** and **S** are the major products.

$$\mathbf{P} \xrightarrow{\mathsf{HI}} \mathbf{Q} \xrightarrow{(i) \operatorname{NaOH}} \mathbf{R} \xrightarrow{(i) (CH_3CO)_2O} \mathbf{S}$$

The correct statement about $\boldsymbol{\mathsf{S}}$ is

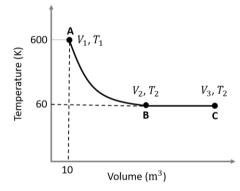
- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

SECTION 3 (Maximum Marks: 24)


- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - *Full Marks* : +4 If **ONLY** the correct integer is entered;
 - Zero Marks : 0 In all other cases.
- Q.8 The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product **X** in 75% yield. The weight (in g) of **X** obtained is____.

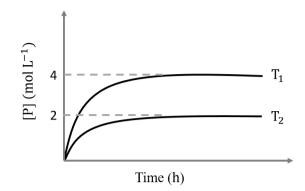
[Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

Q.9 A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure **x** atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be **y** dm³ mol⁻¹. The value of \mathbf{x}/\mathbf{y} is ____.


[Use: Gas constant, $R = 8 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$]

Q.10 The plot of $\log k_f$ versus 1/T for a reversible reaction A (g) \rightleftharpoons P (g) is shown.

Pre-exponential factors for the forward and backward reactions are 10^{15} s^{-1} and 10^{11} s^{-1} , respectively. If the value of log *K* for the reaction at 500 K is 6, the value of log k_b at 250 K is ____.


- [K = equilibrium constant of the reaction k_f = rate constant of forward reaction k_b = rate constant of backward reaction]
- Q.11 One mole of an ideal monoatomic gas undergoes two reversible processes (A \rightarrow B and B \rightarrow C) as shown in the given figure:

 $A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process ($A \rightarrow B$ and $B \rightarrow C$) is $RT_2 \ln 10$, the value of $2 \log V_3$ is ____.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2}R$]

Q.12 In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T₁ and T₂, is shown in the figure:

If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____.

 $[\Delta G_1^{\Theta} \text{ and } \Delta G_2^{\Theta} \text{ are standard Gibb's free energy change for the reaction at temperatures } T_1 \text{ and } T_2,$ respectively.]

Q.13 The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is ____.

 $\begin{array}{c} \text{NC} \qquad & \text{(i) LiAIH}_4 \text{ (excess), then H}_2\text{O} \\ \hline \text{(ii) Acetophenone (excess)} \end{array} \textbf{P}$

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - *Full Marks* : +3 **ONLY** if the option corresponding to the correct combination is chosen;
 - Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
 - *Negative Marks* : -1 In all other cases.
- Q.14 Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

List-I	List-II
$(P) P_2O_3 + 3H_2O \rightarrow$	(1) P(O)(OCH ₃)Cl ₂
$(Q) P_4 + 3NaOH + 3H_2O \rightarrow$	(2) H_3PO_3
(R) PCl ₅ + CH ₃ COOH \rightarrow	(3) PH_3
$(S) H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$	(4) $POCl_3$
	(5) H ₃ PO ₄
(A) $P \rightarrow 2; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 5$	
(B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$	
(C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$	
(D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$	

Q.15 Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I	List-II
(P) $t_{2g}^6 e_g^0$	(1) $[Fe(H_2O)_6]^{2+}$
(Q) $t_{2g}^3 e_g^2$	(2) $[Mn(H_2O)_6]^{2+}$
(R) $e^2 t_2^3$	(3) $[Co(NH_3)_6]^{3+}$
(S) $t_{2g}^4 e_g^2$	(4) $[FeCl_4]^-$
	(5) [CoCl ₄] ²⁻
(A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$	
(B) $P \rightarrow 1; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 5$	
(C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$	
(D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$	

Q.16 Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

(P)	(P) (-)-1-Bromo-2-ethylpentane (single enantiomer)		aq. NaOH
(-)			S _N 2 reaction
(0)	(Q) (-)-2-Bromopentane (single enantiomer)		aq. NaOH 🔸
(Q)			$S_N 2$ reaction
(R)	(-)-3-Bromo-3-methylhexane (single enantiomer)		aq. NaOH
			S _N 1 reaction
		aq	NaOH
(S)	Me H Me Br	S_N	1 reaction
	(single enantiomer)		
(A) P	\rightarrow 1; Q \rightarrow 2; R \rightarrow 5; S \rightarrow	3	

- (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$ (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$
- (D) $P \rightarrow 2; Q \rightarrow 4; R \rightarrow 3; S \rightarrow 5$

List-II

(1) Inversion of configuration

(2) Retention of configuration

(3) Mixture of enantiomers

(4) Mixture of structural isomers

(5) Mixture of diastereomers

Q.17 The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-I	Lis	t-II	
(P) Etard reaction	(1)	Acetophenone Zn-Hg, HCl	•
(Q) Gattermann reaction	(2)	Toluene (i) KMnO₄, KOH, ∆ (ii) SOCI₂	
(R) Gattermann-Koch reaction	(3)	Benzene $\frac{CH_3CI}{anhyd. AICI_3}$	
(S) Rosenmund reduction	(4)	Aniline NaNO ₂ /HCI	
	(5)	Phenol $\xrightarrow{Zn, \Delta}$	

 $(A) P \rightarrow 2; Q \rightarrow 4; R \rightarrow 1; S \rightarrow 3 \\ (B) P \rightarrow 1; Q \rightarrow 3; R \rightarrow 5; S \rightarrow 2 \\ (C) P \rightarrow 3; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 4 \\ (D) P \rightarrow 3; Q \rightarrow 4; R \rightarrow 5; S \rightarrow 2$

END OF THE QUESTION PAPER