JEE (Advanced) 2019

JEE (ADVANCED) 2019 PAPER 1 PART-I PHYSICS

खंड 1 (अधिकतम अंक: 12)

- इस खंड में चार (04) प्रश्न हैं।
- प्रत्येक प्रश्न के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से केवल एक विकल्प ही सही उत्तर है।
- प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर से संबंधित विकल्प को चुनिए।
- प्रत्येक प्रश्न के उत्तर का मूल्याकन निम्न योजना के अनुसार होगा:
 - पूर्ण अंक : +3 यदि सिर्फ सही विकल्प ही चुना गया है।
 - शून्य अंक : 0 यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)।
 - त्रण अंक : –1 अन्य सभी परिस्थितियों में।
- Q.1 मान लीजिये मुक्त आकाश (free space) में एक गोलाकार गैस के बादल का द्रव्यमान घनत्व ρ(r) है तथा इसकी केन्द्र से त्रिज्य (radial) दूरी r है | यह गैसीय बादल m द्रव्यमान के समान कणों से बना है जो कि एक समकेंद्रीय वृत्ताकार कक्षाओं में समान गतिज ऊर्जा K से घूम रहे हैं | इन कणों पर पारस्परिक गुरुत्वाकर्षण बल लग रहा है | यदि ρ(r) समय के साथ एक स्थिर राशि है, तब कणों का संख्या घनत्व n(r) = ρ(r)/m का मान होगा,

[G सार्वत्रिक गुरुत्वीय नियतांक है]

(A)
$$\frac{K}{2 \pi r^2 m^2 G}$$
 (B) $\frac{K}{\pi r^2 m^2 G}$
(C) $\frac{3K}{\pi r^2 m^2 G}$ (D) $\frac{K}{6 \pi r^2 m^2 G}$

- Q.2 R त्रिज्या के एक पतले गोलीय अचालक कोश (spherical insulating shell) पर आवेश एकसमान रूप से इस तरह से वितरित है कि इसकी सतह पर विभव V_0 है | इसमें एक छोटे क्षेत्रफल $\alpha 4\pi R^2$ ($\alpha \ll 1$) वाला एक छिद्र बाकी कोश को प्रभावित किए बिना बनाया जाता है | निम्नलिखित कथनों में से कौन सा सही है ?
 - (A) कोश के केंद्र पर विभव का मान $2\alpha V_0$ से घटता है |
 - (B) कोश के केंद्र पर वैधुत क्षेत्र (electric field) का परिमाण $\frac{\alpha V_0}{2B}$ से घटता है |
 - (C) कोश के केंद्र तथा केंद्र से ½ R दूरी पर छिद्र की ओर उपस्थित बिन्दु पर विभवों का अनुपात 1-a होगा।
 - (D) कोश के केंद्र व छिद्र से गुजरने वाली रेखा पर केंद्र से 2R की दूरी पर उपस्थित बिन्दु पर वैधुत क्षेत्र का परिमाण ^{avo}_{2R} से घट जाएगा |

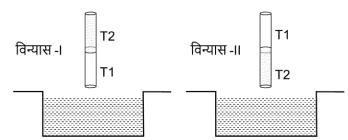
Q.3 एक धारा वाहक तार एक धातु की छड़ को गरम करता है | तार छड़ को एक स्थिर शक्ति (P) (constant power) प्रदान करता है | यह धातु छड़ एक अचालक बर्तन में रखी गयी है | यह पाया गया कि धातु का तापमान (T) समय (t) के साथ निम्न ढंग से परिवर्तित होता है

$$T(t) = T_0 \left(1 + \beta t^{\frac{1}{4}} \right),$$

जहां β एक उपयुक्त विमा का स्थिरांक है जबकि To तापमान का है | धातु की ऊष्मा धारिता है,

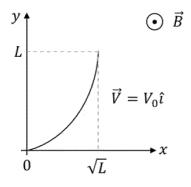
(A) $\frac{4P(T(t)-T_0)^3}{\beta^4 T_0^4}$ (B) $\frac{4P(T(t)-T_0)^4}{\beta^4 T_0^5}$ (C) $\frac{4P(T(t)-T_0)^2}{\beta^4 T_0^3}$ (D) $\frac{4P(T(t)-T_0)}{\beta^4 T_0^2}$

Q.4 एक रेडियोएक्टिव नमूने में, ${}^{49}_{19}K$ नाभिकों का क्षय ${}^{49}_{20}Ca$ अथवा ${}^{49}_{18}Ar$ स्थिर नाभिकों में होता है, जिनके क्षय नियतांक (decay constant) क्रमशः 4.5×10^{-10} प्रति वर्ष (per year) तथा 0.5×10^{-10} प्रति वर्ष हैं | दिया है कि इस नमूने में सभी ${}^{40}_{20}Ca$ और ${}^{40}_{18}Ar$ नाभिक केवल ${}^{40}_{19}K$ नाभिकों से बनते हैं | यदि $t \times 10^9$ वर्षों में, स्थिर नाभिकों ${}^{40}_{20}Ca$ और ${}^{40}_{18}Ar$ की संख्या के कुल योग एवं रेडियोएक्टिव नाभिकों ${}^{40}_{18}K$ की संख्या का अनुपात 99 है तो t का मान होगा,

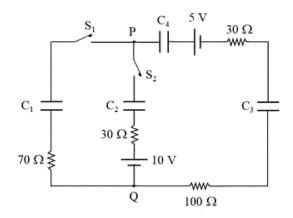

[दिया है: ln 10 = 2.3]

(A) 1.15 (B) 9.2 (C) 2.3 (D) 4.6

	खंड २ (अधिकतम अंक: 32)
•	इस खंड में आठ (08) प्रश्न हैं।
•	प्रत्येक <i>प्रश्न</i> के लिए चार विकल्प दिए गए हैं इन चार विकल्पों में से एक या एक से अधिक विकल्प सही उत्तर है (हैं)
٠	प्रत्येक <i>प्रश्न</i> के लिए दिए हुए विकल्पों में से सही उत्तर(उत्तरों) से संबंधित विकल्प (विकल्पों) को चुनिए
•	प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगाः
	पूर्ण अंक : +4 यदि केवल (सारे) सही विकल्प (विकल्पों) को चुना गया है
	आंशिक अंक 🛛 : +3) यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया हैं
	आंशिक अंक 🛛 : +2 यूदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया हैं और दोनों चुने हुए
	विकल्प सही विकल्प हैं।
	ुआंशिक अंक 🛛 : +1 यूदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ
	विकल्प सही विकल्प है ।
	शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)
	ऋण अंक ूर्न् अन्य सभी परिस्थितियों में
٠	उदाहरणः यदि किसी प्रश्न के लिए केवल विकल्प (A), (B) और (D) सही विकल्प हैं, तब
	केवल विकल्प (A), (B) और (D) चुनने पर +4 अंक मिलेंगे;
	केवल विकल्प (A) और (B) चुनने पर +2 अंक मिलेंगे;
	केवल विकल्प (A) और (D) चुनने पर +2 अंक मिलेंगे;
	केवल विकल्प (B) और (D) चुनने पर +2 अंक मिलेंगे;
	केवल विकल्प (A) चुनने पर +1 अंक मिलेंगे;
	केवल विकल्प (B) चुनने पर +1 अंक मिलेंगे;
	केवल विकल्प (D) चुनने पर +1 अंक मिलेंगे;
	कोई भी विकल्प ना चुनने पर (अर्थात् प्रश्न अनुत्तरित रहने पर) 0 अंक मिलेंगे; और अन्य किसी विकल्पों के संयोजन को चुनने
	पर -1 अंक मिलेंगे

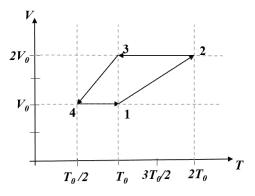

Q.5 दो भिन्न पदार्थो की एक समान 0.2 mm त्रिज्या वाली दो केशनलियों T1 तथा T2, जिनके पानी के साथ संपर्क कोण (contact angle) क्रमशः 0° तथा 60° हैं, को जोड़कर एक केशनली बनाते हैं | इस केशनली को चित्रानुसार दो भिन्न विन्यास-। और विन्यास-॥ में पानी में ऊर्ध्वाधर डुबाया जाता है | निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

[पानी का पृष्ठतनाव (surface tension) = 0.075 N/m, पानी का घनत्व = 1000 kg/m³ तथा $g = 10 \text{ m/s}^2$]


- (A) पानी के मुक्त पृष्ठ (meniscus) में उपस्थित पानी के भार के कारण केशनली मे चढ़े पानी की ऊँचाई में संशोधन (correction) का मान दोनों विन्यासों के लिये भिन्न होगा |
- (B) विन्यास-11 के लिये, यदि केशनलियों का जोड़ पानी की सतह से 5 cm ऊँचाई पर है, नली में चढ़े पानी की ऊँचाई 3.75 cm होगी | (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)
- (C) विन्यास-। के लिये, , यदि केशनलियों का जोड़ पानी की सतह से 8 cm ऊँचाई पर है, नली में चढ़े पानी की ऊँचाई 7.5 cm होगी | (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)
- (D) विन्यास-। के लिये, यदि केशनलियों का जोड़ पानी की सतह से 5 cm ऊपर है, नली में चढ़े पानी की ऊँचाई 8.75 cm से अधिक होगी | (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)

Q.6 चित्रानुसार एक असमान चुंबकीय क्षेत्र $\vec{B} = B_0 \left(1 + \left(\frac{y}{L}\right)^{\beta}\right) \hat{k}$ में एक परवलयाकार (parabolic shape), आरंभ में $y = x^2$ वाला, विद्युत चालक तार वेग $\vec{V} = V_0 \hat{\iota}$ से चल रहा है | यदि V_0 , B_0 , L तथा β धनात्मक नियतांक हैं एवं तार के सिरों के मध्य उत्पन्न विभवांतर $\Delta \phi$ है, तब निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

- (A) $\beta = 0$ के लिए, $|\Delta \phi| = \frac{1}{2} B_0 V_0 L$
- (B) $\beta = 2$ के लिए, $|\Delta \phi| = \frac{4}{3} B_0 V_0 L$
- (C) यदि इस परवलयाकार तार के स्थान पर $\sqrt{2L}$ लंबाई वाला एक सीधे तार, आरम्भ में y = x, का उपयोग किया जाये तब $|\Delta \phi|$ समान रहेगा |
- (D) |Δφ| का मान y-अक्ष पर तार की प्रेक्षेपित लंबाई के समानुपाती होगा |


Q.7 प्रदर्शित परिपथ में, आरम्भ में संधारित्रों पर कोई आवेश नहीं है और कुंजी S₁ और S₂ खुली हैं | संधारित्रों के मान $C_1 = 10 \,\mu\text{F}$, $C_2 = 30 \,\mu\text{F}$ और $C_3 = C_4 = 80 \,\mu\text{F}$ हैं | निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

- (A) समय t = 0 पर, जब कुंजी S1 को बंद किया जाता है, तब बंद परिपथ में तात्क्षणिक (instantaneous) धारा का मान 25 mA होगा |
- (B) यदि कुंजी S1 को लंबे समय के लिए इस प्रकार बंद किया जाए कि सभी संधारित्र पूर्ण आवेशित हो जाए तब संधारित्र C1 पर 4 V का विभव होगा |
- (C) कुंजी S₁ को लंबे समय के लिए इस प्रकार बंद रखा जाता है कि सभी संधारित्र पूर्ण आवेशित हो जाते हैं | अब कुंजी S₂ को बंद किया जाता है तब इस समय पर 30 Ω के प्रतिरोध (P और Q के मध्य) में तात्क्षणिक (instantaneous) धारा का मान 0.2 A होगा | (दशमलव के प्रथम स्थान तक राउंड ऑफ (round off))
- (D) यदि कुंजी S1 को लंबे समय के लिए इस प्रकार बंद किया जाए कि सभी संधारित्र पूर्ण आवेशित हो जाए तब बिन्दु P और Q के मध्य 10 V का विभवांतर होगा |

- Q.8 एक *R* त्रिज्या वाले आवेशित कोश पर कुल आवेश *Q* है | एक लंबाई *h* और त्रिज्या *r* वाले बेलनाकार बंद पृष्ठ, जिसका केंद्र कोश के केंद्र पर ही है, से गुजरने वाला वैद्युत फ्लक्स (flux) Φ है | यहाँ बेलन का केंद्र इसके अक्ष पर एक बिन्दु है जो कि ऊपरी और निचली सतह से समान दूरी पर है | निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ? [मुक्त आकाश (free space) की वैद्युतशीलता ε₀ है]
 - (A) $Tarrow a constraints (A) = 2R \ A constraints (A) = 2R \ A constraints (A) = 2R \ A constraints (A) = 0 (B) = 3R/5 \ A constraints (A) = 3R/5 \ A cons$
- Q.9 एकपरमाणुक आदर्श गैस का एक मोल एक ऊष्मागतिकीय चक्र (thermodynamic cycle) से गुजरता है, जिसे आयतन–तापमान (V-T) ग्राफ़ चित्र में दिखाया गया है| निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

[R गैस नियतांक है]

(A) इस ऊष्मागतिकीय चक्र $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)$ में किया गया कार्य $|W| = \frac{1}{2}RT_0 \mathbf{\hat{e}}$

(B) उपर्युक्त ऊष्मागतिकीय चक्र में केवल समायतनीय (isochoric) और रुद्धोष्म (adiabatic) प्रक्रम आते हैं |

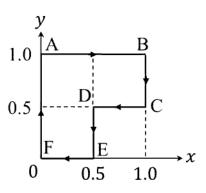
- (C) चक्रम 1 \rightarrow 2 तथा 2 \rightarrow 3 में ऊष्मा स्थानांतरण का अनुपात $\left|\frac{Q_{1\rightarrow 2}}{Q_{2\rightarrow 3}}\right| = \frac{5}{3} \epsilon$ |
- (D) चक्रम 1 \rightarrow 2 तथा 3 \rightarrow 4 में ऊष्मा स्थानांतरण का अनुपात $\left| \frac{Q_{1 \rightarrow 2}}{Q_{3 \rightarrow 4}} \right| = \frac{1}{2} \overline{\mathbb{R}}$ |

Q.10 चित्र में दर्शाया गया एक पतला उत्तल लेंस दो पदार्थों से मिलकर बना है, जिनके अपवर्तनांक (refractive index) क्रमशः n_1 और n_2 हैं | लेंस के बाएँ और दाएँ पृष्ठों की वक्रता त्रिज्याएँ समान हैं | $n_1 = n_2 = n$ के लिए लेंस की फोकस दूरी f है | जब $n_1 = n$ और $n_2 = n + \Delta n$ है, तब फोकस दूरी $f + \Delta f$ है | यह मानते हुए कि $\Delta n \ll (n-1)$ और 1 < n < 2, निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

(A) $\left|\frac{\Delta f}{f}\right| < \left|\frac{\Delta n}{n}\right|$

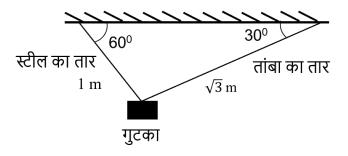
(B) यदि n = 1.5, $\Delta n = 10^{-3}$ और f = 20 cm हो , तब $|\Delta f|$ का मान 0.02 cm होगा | (दशमलव के द्वितीय स्थान तक राउंड ऑफ (round off))

(C) यदि
$$\frac{\Delta n}{n} < 0$$
 हो तब $\frac{\Delta f}{f} > 0$

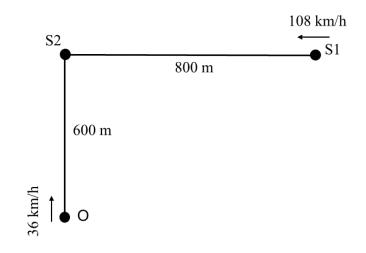

- (D) यदि दोनों उत्तल पृष्ठों को उसी समान वक्रता त्रिज्या वाले अवतल पृष्ठों से बदला जाता है तब <u>Ar</u> और <u>An</u> <u>n</u> का संबंध अपरिवर्तित रहता है।
- Q.11 मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा-रहित (dimensionless) हैं | यदि लंबाई की विमा *L* हो, तब निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?
 - (A) रेखीय संवेग की विमा (dimension) L^{-1} है |
 - (B) ऊर्जा की विमा (dimension) L⁻² है |
 - (C) बल की विमा (dimension) L⁻³ है |
 - (D) शक्ति की विमा (dimension) L⁻⁵ है |

Q.12 दो एकसमान चलकुंडली धारामापी (galvanometer) जिनके प्रतिरोध 10 Ω हैं तथा इनमें 2 μA पर पूर्णस्केल विक्षेप (full-scale deflection) मिलता है | इनमें से एक को 100 mV पूर्णस्केल मापन योग्य वोल्टमीटर तथा दूसरे को 1mA पूर्णस्केल मापन योग्य अमीटर में उपयुक्त प्रतिरोधों का प्रयोग करते हुए परिवर्तित करते हैं | ओम का नियम (Ohm's law) प्रयोग में *R* = 1000 Ω प्रतिरोध एवं एक आदर्श सेल के साथ इन दोनों का उपयोग विभव और धारा को मापने के लिये किया जाता है | निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) ?

(A) वोल्टमीटर के प्रतिरोध का मान 100 kΩ होगा |


- (B) अमीटर के प्रतिरोध का मान 0.02 Ω होगा |(दशमलव के द्वितीय स्थान तक राउंड ऑफ (round off))
- (C) *R* का मापा गया मान 978 Ω < *R* < 982 Ω होगा |
- (D) यदि आदर्श सेल को दूसरे सेल जिसका आंतरिक प्रतिरोध 5 Ω से बदला जाये तब प्रतिरोध *R* का मापा गया मान 1000 Ω से अधिक होगा |

- खंड 3 (अधिकतम अंक: 18) • इस खंड में छ: (06) प्रस हैं। प्रत्येक प्रश्न का उत्तर एक संख्यात्मक मान (Numerical Value) है। • प्रत्येक प्रश्न के उत्तर के सही संख्यात्मक मान को माउज़ (mouse) और ऑन स्क्रीन (on-screen) वर्चुअल नुमेरिक कीपैड (virtual numeric keypad) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें। यदि संख्यात्मक मान में दो से अधिक दशमलब स्थान हैं, तो संख्यात्मक मान को दशमलब के दो स्थानों तक टूंकेट/राउंड-ऑफ (truncate/round-off) करें • प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा: पूर्ण अंक : +3 यदि दर्ज किया गया संख्यात्मक मान (numerical value) ही सही उत्तर है। शूत्य अंक : 0 अन्य सभी परिस्थितियों में।
- Q.13 एक कण को बल $\vec{F} = (\alpha y \hat{\imath} + 2\alpha x \hat{\jmath})$ N, जहाँ x और y का मान मीटर में हैं तथा $\alpha = -1$ Nm⁻¹ है, की उपस्थिति में AB-BC-CD-DE-EF-FA पथ पर चित्रानुसार चलाया जाता है | बल \vec{F} द्वारा कण पर किये गये कार्य का परिमाण _____ जूल (Joule) होगा |


Q.14 एक 100 N भार वाले गुटके को तांबे और स्टील के तारों, जिनका अनुप्रस्थ काट क्षेत्रफल (cross sectional area) एकसमान तथा 0.5 cm² है और लंबाई क्रमशः $\sqrt{3}$ m तथा 1 m है, द्वारा लटकाया जाता है | तारों के दूसरे छोर छत पर चित्रानुसार जुड़े हुए हैं | तांबे और स्टील के तार क्रमशः छत से 30° और 60° का कोण बनाते हैं | यदि तांबे के तार में लंबाई वृद्धि (Δl_c) तथा स्टील के तार में लंबाई वृद्धि (Δl_c) है तब $\frac{\Delta l_c}{\Delta l_s} = _____ है |$

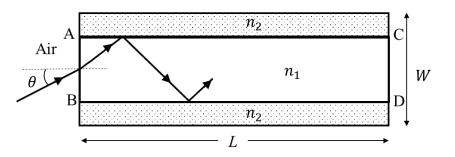
[तांबे और स्टील का यंग गुणांक (Young's modulus) क्रमशः 1×10¹¹ N/m² and 2×10¹¹ N/m² हैं]

Q.15 एक रेलगाड़ी (S1) 108 km/h के समान वेग से चलते हुए दूसरी रेलगाड़ी (S2) जो कि स्टेशन पर खड़ी है, की तरफ जा रही है | एक श्रोता (O) 36 km/h के समान वेग से S2 की तरफ चित्रानुसार जा रहा है | दोनों रेलगाडियाँ 120 Hz के समान आवृत्ति की सीटियाँ बजा रही हैं | जब O की दूरी S2 से 600 m है तथा S1 और S2 के बीच की दूरी 800 m है तब O के द्वारा सुने गए विस्पंदनों (beats) की संख्या _____ है |

[ध्वनि की गति = 330 m/s]

Paper 1

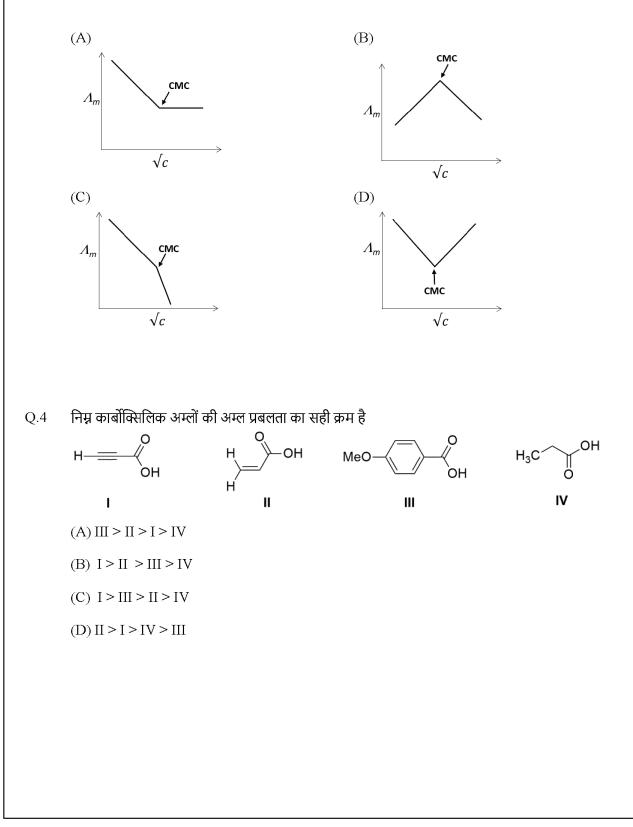
Q.16 एक *C* धारिता वाले समान्तर प्लेट संधारित्र के प्लेटों के बीच की दूरी *d* है और प्रत्येक प्लेट का क्षेत्रफल *A* है | प्लेटों के बीच, पूरे स्थान को प्लेटों के समान्तर, $\delta = \frac{a}{N}$ मोटाई वाली *N* परावैद्युत परतों से भर देते हैं | m^{th} परत का परावैद्युतांक $K_m = K\left(1 + \frac{m}{N}\right)$ है | बहुत अधिक *N* (> 10³) के लिए धारिता $C = \alpha \left(\frac{K\epsilon_0 A}{d \ln 2}\right)$ है | α का मान _____ होगा |


[मुक्त आकाश (free space) की वैद्युतशीलता ϵ_0 है]

Q.17 एक 30°C के द्रव को एक ऊष्मामापी (calorimeter), जिसका तापमान 110°C, में धीरे-धीरे डाला जाता है | द्रव का क्वथनांक (boiling temperature) 80°C है | ऐसा पाया गया कि द्रव का पहला 5 gm पूर्ण रूप से वाष्पित हो जाता है | इसके बाद द्रव की 80 gm और मात्रा डालने पर साम्यावस्था का तापमान 50°C हो जाता है | द्रव की गुप्त (latent) और विशिष्ट (specific) ऊष्माओं का अनुपात _____ °C होगा |

[वातावरण के साथ ऊष्मा स्थानांतरण को उपेक्षणीय माने]

Q.18 एक *L* लंबाई तथा *W* चौड़ाई की एक समतल संरचना दो भिन्न प्रकाशीय पदार्थों से बनी है, जिनका अपवर्तनांक $n_1 = 1.5$ और $n_2 = 1.44$ है, जैसा चित्र में प्रदर्शित है | यदि $L \gg W$ है तब AB सिरे पर आपतित किरण का CD सिरे से उदगमन (emerge) संरचना के अंदर पूर्ण आंतरिक परावर्तन (total internal reflection) होने पर ही होगा | L = 9.6 m के लिए, यदि आपतन कोण θ को बदलते हैं तब किरण द्वारा CD सिरे से बाहर निकलने में लिया गया अधिकतम समय $t \times 10^{-9}$ s है, जहाँ *t* का मान _____ है |


[प्रकाश कि गति, $c = 3 imes 10^8$ m/s]

खंड 1 (अधिकतम अंक: 12) इस खंड में चार (04) प्रश्न हैं। प्रत्येक प्रश्न के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से केवल एक विकल्प ही सही उत्तर है। प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर से संबंधित विकल्प को चुनिए। प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा: : +3 यदि सिर्फ सही विकल्प ही चुना गया है। पूर्ण अंक : 0 यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)। शुन्य अंक त्रण अंक : -1 अन्य सभी परिस्थितियों में। Q.1 क्रोमियम(III) लवण के सुहागा-मनका परीक्षण (borax bead test) में हरे रंग का कारण है (A) Cr(BO₂)₃ (B) Cr₂(B₄O₇)₃ (C) Cr_2O_3 (D) CrB Q.2 कैलामीन (calamine), मैलाकाइट (malachite), मैग्नेटाइट (magnetite) और क्रायोलाइट (cryolite) क्रमशः हैं (A) ZnSO₄, CuCO₃, Fe₂O₃, AlF₃ (B) ZnSO₄, Cu(OH)₂, Fe₃O₄, Na₃AlF₆ (C) ZnCO₃, CuCO₃·Cu(OH)₂, Fe₃O₄, Na₃AlF₆ (D) ZnCO₃, CuCO₃, Fe₂O₃, Na₃AlF₆

Paper 1

Q.3 सोडियम स्टिऐरेट (sodium stearate) के जलीय विलयन, जो एक प्रबल विद्युतअपघटय (electrolyte) जैसा व्यवहार दर्शाता है, की मोलर चालकता (Am) को विभिन्न सान्द्रताओं (c) मे मापा गया। निम्न चित्रों में से मिसेल विरचन (micelle formation) दर्शाने वाला सही चित्र कौन सा है ? (क्रांतिक मिसेल सान्द्रता (critical micelle concentration, CMC) को चित्रों में तीर द्वारा दर्शाया गया है)

खड २ (आधकतम अक: ३२)	
 इस खंड में आठ (08) प्रश्न हैं। 	
 प्रत्येक प्रशन के लिए चार विकल्प दिए गए हैं इन चार विकल्पों में से एक या एक से अधिक विकल्प सही उत्तर है (हैं) 	
 प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर(उत्तरों) से संबंधित विकल्प (विकल्पों) को चुनिए 	
 प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा: 	
पूर्ण अंक 💫 : +4) यदि केवल (सारे) सही विकल्प (विकल्पों) को चुना गया है	
आंशिक अंक 🛛 : +3) यदि चारों विकल्प सही हैं परन्तु केवल तीन विकल्पों को चुना गया हैं	
— आंशिक अंक— : +2–यदि तीन या तीन से अधिक विकल्प सही हैं परन्तु केवल दो विकल्पों को चुना गया हैं और दोनों चुने हुए	ſ
विकल्प सही विकल्प हैं	
आंशिक अंक 🛛 : +1) यदि दो या दो से अधिक विकल्प सही हैं परन्तु केवल एक विकल्प को चुना गया है और चुना हुआ	
विकल्प सही विकल्प हे	
शून्य अंक : 0 यदि किसी भी विकल्प को नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)	
ऋण अंक ुः -1 अन्य सभी परिस्थितियों में	
 उदाहरण: यदि किसी प्रश्न के लिए केवल विकल्प (A), (B) और (D) सही विकल्प हैं, तब 	
केवल विकल्प (A), (B) और (D) चुनने पर +4 अंक मिलेंगे;	
केवल विकल्प (A) और (B) चुनने पर +2 अंक मिलेंगे;	
केवल विकल्प (A) और (D) चुनने पर +2 अंक मिलेंगे;	
केवल विकल्प (B) और (D) चुनने पर +2 अंक मिलेंगे;	
केवल विकल्प (A) चुनने पर +1 अंक मिलेंगे;	
केवल विकल्प (B) चुनने पर +1 अंक मिलेंगे;	
केवल विकल्प (D) चुनने पर +1 अंक मिलेंगे;	
कोई भी विकल्प ना चुनने पर (अर्थात् प्रश्न अनुत्तरित रहने पर) 0 अंक मिलेंगे; और अन्य किसी विकल्पों के संयोजन को चुनने	
पर -1 अंक मिलेंगे	

- Q.5 एक टिन क्लोराइड Q, निम्न अभिक्रियाएँ (असंतुलित) दर्शाता है।
 - $$\begin{split} \mathbf{Q} &+ \mathbf{Cl}^- \to \mathbf{X} \\ \mathbf{Q} &+ \mathbf{Me}_3 \mathbf{N} \to \mathbf{Y} \\ \mathbf{Q} &+ \mathbf{Cu} \mathbf{Cl}_2 \to \mathbf{Z} + \mathbf{Cu} \mathbf{Cl} \end{split}$$

X एक पिरामिडिय ज्यामिति (pyramidal geometry) दर्शानेवाला ऋणायन (monoanion) है। Y और Z दोनों उदासीन यौगिक हैं। सही विकल्प (विकल्पों) को चुनिये

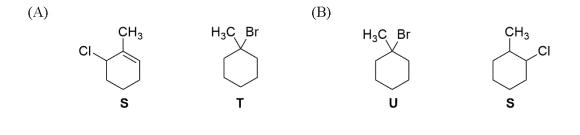
- (A) X में केन्द्रीय परमाणु का संकरण (hybridization) sp^3 है
- (B) Y में समन्वयी आबंध (coordinate bond) है
- (C) Z में केन्द्रीय परमाणु की ऑक्सीकरण अवस्था (oxidation state) +2 है
- (D) Z में केन्द्रीय परमाणु पर एक एकाकी इलेक्ट्रॉन युग्म (lone pair of electrons) है

- Q.6 O₂ की उपस्थिति मे, MnO₂ का KOH के साथ संगलन पर एक लवण W उत्पादित होता है। W के क्षारीय विलयन का विद्युतअपघटनी ऑक्सीकरण (electrolytic oxidation) पर एक अन्य लवण X उत्पादित होता है। W और X मे उपस्थित मैंगनीज रहनेवाला आयन क्रमशः Y और Z हैं। सही कथन है (हैं)
 - (A) जलीय अम्लीय घोल मे, Y असमानुपातन अभिक्रिया (disproportionation reaction) के पश्चात Z और MnO2 देता है
 - (B) Y और Z दोनों रंगीन और चतुष्फलकीय (tetrahedral) आकार के हैं
 - (C) Y प्रतिचुंबकीय (diamagnetic) स्वभाव और Z अनुचुंबकीय (paramagnetic) स्वभाव के है
 - (D) Y और Z दोनों में, π -आबंध ऑक्सिजन के p कक्षकों एवं मैंगनीज के d कक्षकों के बीच है
- Q.7 निम्न विकल्पों में से वो अभिक्रिया (अभिक्रियाएं) जिसकी (जिनकी) मानक अभिक्रिया एन्थैल्पी (standard enthalpy of reaction) अपने मानक विरचन एन्थैल्पी (standard enthalpy of formation) के समान हो, उसे (उन्हें) चुनिये।
 - (A) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

(B)
$$2C(g) + 3H_2(g) \rightarrow C_2H_6(g)$$

(C)
$$\frac{3}{2}O_2(g) \to O_3(g)$$

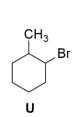
(D)
$$\frac{1}{8}S_8(s) + O_2(g) \to SO_2(g)$$

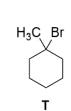

- Q.8 साम्यावस्था में, एक गैस अणु की वर्ग माल्य मूल गति (root mean square speed, u_{rms}) और औसत स्थानांतरण ऊर्जा (average translational kinetic energy, _{Eav}) के संदर्भ में, निम्न कथनों में से सही कथन कौन सा(से) है(हैं) ?
 - (A) जब ताप चौगुना किया जाता है, तब *urms* दुगुनी हो जाती है
 - (B) जब ताप चौगुना किया जाता है, तब \mathcal{E}_{av} दुगुनी हो जाती है
 - (C) किसी दिये गए ताप पर, Eav आण्विक द्रव्यमान पर निर्भर नहीं है
 - (D) आण्विक द्रव्यमान के वर्गमूल पर $u_{\rm ms}$ व्युत्क्रमानुपातीय (inversely proportional) है

- Q.9 निम्न विकल्पों में चार अणुओं के समुच्चय हर विकल्प में दिये गए हैं। सामान्य ताप पर, जिस (जिन) विकल्प (विकल्पों) के सभी चार अणुओं की स्थायी द्विध्रुव-आधूर्ण (permanent dipole moment) है, उसे (उन्हें) चुनिये।
 - (A) BeCl₂, CO₂, BCl₃, CHCl₃
 - (B) NO2, NH3, POCl3, CH3Cl
 - (C) BF3, O3, SF6, XeF6
 - (D) SO₂, C_6H_5Cl , H_2Se , BrF_5
- Q.10 दिये गए क्षय क्रम में

- x1, x2, x3 और x4 क्रमानुसार प्रत्येक समस्थानिक (isotope) से उत्सर्जित कण/ विकरण हैं। सही विकल्प है(हैं)
- (A) x1 ऋणावेशित प्लेट (negatively charged plate) की तरफ विक्षेपित होगा
- (B) x₂ है β[−]
- (C) x3 है y किरण
- (D) Z यूरेनियम (uranium) का एक समस्थानिक है
- Q.11 निम्न में सही कथन कौन सा है (से हैं)?
 - (A) मोनोसैकैराइडों (monosaccharides) के जलअपघटन कराने पर पालीहाइड्रोक्सी ऐल्डीहाइड (polyhydroxy aldehyde) और कीटोन (ketone) प्राप्त नहीं होते हैं
 - (B) ब्रोमीन (bromine) जल द्वारा ग्लूकोस (glucose) के आक्सीकरण पर ग्लूटामिक (glutamic) अम्ल प्राप्त होता है
 - (C) सूक्रोस (sucrose) के जलअपघटन पर दक्षिण घ्रवण-घूर्णक (dextrorotatory) ग्लूकोस और वाम घ्रवण-घूर्णक (laevorotatory) फ्रक्टोज़ (fructose) प्राप्त होते हैं
 - (D) D-(+)- ग्लूकोस के दो छ: सदस्यीय चक्रीय हैमिऐसीटैल (hemiacetal) रूपों को ऐनोमर (anomer) कहते हैं

Q.12 दिये गए अभिक्रिया क्रमों के लिए सही विकल्प (विकल्पों) को चुनिये


$$\begin{array}{cccc} \mathbf{C_6H_{10}O} & \stackrel{i) \text{ MeMgBr}}{\underset{ii)}{\text{H}_2O}} & \mathbf{Q} & \stackrel{\text{HI-F}_{\overline{x}} \text{ HCI}}{\underset{(HJ \otimes H)}{\overset{(HI-F_{\overline{x}} \text{ HCI})}{\overset{(HJ \otimes H)}{\overset{(HJ \otimes H)}{\overset{(HJ$$


(D)

(C)

H₃C CI

CH₃ Br

खंड 3 (अधिकतम अंक: 18)

• इस खंड में छ: (06) प्रश्न हैं। प्रत्येक प्रश्न का उत्तर एक संख्यात्मक मान (Numerical Value) है।

• प्रत्येक प्रश्न के उत्तर के सही संख्यात्मक मान को माउज़ (mouse) और ऑन स्क्रीन (on-screen) वर्चुअल नुमेरिक कीपैड (virtual numeric keypad) के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें। यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को दशमलव के **दो** स्थानों तक टूंकेट/राउंड-ऑफ (truncate/round-off) करें

- प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा:
- पूर्ण अंक : +3 यदि दर्ज किया गया संख्यात्मक मान (numerical value) ही सही उत्तर है।

- Q.13 B₂H₆, B₃N₃H₆, N₂O, N₂O₄, H₂S₂O₃ और H₂S₂O₈ में से जिन अणुओं में दो समान परमाणुओं के बीच सहसंयोजक (covalent) आबन्ध हैं, उनकी कुल संख्या है _____
- Q.14 143 K पर, XeF₄ और O_2F_2 की अभिक्रिया से एक जीनॉन (xenon) यौगिक Y उत्पादित होता है। सम्पूर्ण अणु Y में एकाकी इलेक्ट्रॉन युग्म(युग्मों) (lone pair(s) of electrons) की कुल संख्या है _____
- Q.15 298 K पर, निम्न अभिक्रिया का साम्यावस्ता स्थिरांक K_c (equilibrium constant) 1.6 x 10¹⁷ है। Fe²⁺ (aq) + S²⁻ (aq) FeS (s) जब 0.06 M Fe²⁺ (aq) और 0.2 M S²⁻ (aq) के समान आयतनों का मिश्रण किया गया, तब Fe²⁺ (aq) की साम्य सान्द्रता (equilibrium concentration) Y x 10⁻¹⁷ M पायी गयी । Y का मान है
- Q.16 0.5 g अवाष्पशील अनायनिक विलेय (non-volatile non-ionic solute) को 39 g बेन्जीन (benzene) में घोलने पर, उसका वाष्प दाब 650 mm Hg से 640 mm Hg हो गया। इस विलेय को बेन्जीन में मिलाने के उपरांत, बेन्जीन के हिमांक का अवनमन (depression of freezing point) (K में) है
 (दिया गया : बेन्जीन का मोलर द्रब्यमान 78 g mol⁻¹ और बेन्जीन का मोलल अवनमन स्थिरांक (molal freezing point depression constant) 5.12 K kg mol⁻¹ है।)

शून्य अंक : 0 अन्य सभी परिस्थितियों में।

प्रयोग संख्या	[A] (mol dm ⁻³)	[B] (mol dm ⁻³)	[C] (mol dm ⁻³)	अभिक्रिया गति (mol dm ⁻³ s ⁻¹)
1	0.2	0.1	0.1	6.0 × 10 ⁻⁵
2	0.2	0.2	0.1	$6.0 imes10^{-5}$
3	0.2	0.1	0.2	$1.2 imes 10^{-4}$
4	0.3	0.1	0.1	9.0 × 10 ⁻⁵

Q.17 निम्न सारणी में, $A + B + C \rightarrow 3$ तपाद की अभिक्रिया के बलगतिकी आंकडों पर गौर कीजिये।

जब [A] = 0.15 mol dm⁻³, [B] = 0.25 mol dm⁻³ और [C] = 0.15 mol dm⁻³ है, तब अभिक्रिया गति Y x 10⁻⁵ mol dm⁻³ s⁻¹ पायी गयी । Y का मान है

Q.18 योजनायें 1 और 2 (schemes 1 and 2) क्रमशः P से Q तक, तथा R से S तक का रूपान्तरण दर्शाते हैं। योजना 3 में T का संश्लेषण Q और S से दर्शाया गया है। T के एक अणु में Br परमाणुओं की कुल संख्या है

योजना 1:

त्रना 1:	i) Br2 (अधिक मात्रा मे), H2O
NH ₂	ii) NaNO ₂ , HCI, 273 K
\triangleleft	iii) CuCN/KCN
	iv) H ₃ O⁺, ∆ (मुख्य)
D	v) SOCI ₂ , पिरिडीन (pyridine)

योजना 2:

\wedge	i) ओलियम (Oleum)	
	ii) NaOH, ∆	e
\checkmark	iii) H ⁺	(मुख्य)
R	iv) Br ₂ , CS ₂ , 273 K	

योजना ३:

S

JEE (Advanced) 2019

JEE (ADVANCED) 2019 PAPER 1 PART-III MATHEMATICS

खंड 1 (अधिकतम अंक: 12)

• इस खंड में **चार (04)** प्रश्न हैं।

प्रत्येक प्रश्न के लिए चार विकल्प दिए गए हैं। इन चार विकल्पों में से केवल एक विकल्प ही सही उत्तर है।

प्रत्येक प्रश्न के लिए दिए हुए विकल्पों में से सही उत्तर से संबंधित विकल्प को चुनिए।

्रप्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा:

- पूर्ण अंक +3 यदि सिर्फ सही विकल्प ही चुना गया है।
- शून्य अंक : 0 यदि कोई भी विकल्प नहीं चुना गया है (अर्थात् प्रश्न अनुत्तरित है)।

ऋण अंक : –1 अन्य सभी परिस्थितियों में।

- Q.1माना कि S उन सभी सम्मिश्र संख्याओं (complex numbers) z का समुच्चय (set) है जो $|z 2 + i| \ge \sqrt{5}$ को संतुष्ट करती हैं | यदि एक सम्मिश्र संख्या z_0 ऐसी है जिससे $\frac{1}{|z_0 1|}$ समुच्चय $\left\{\frac{1}{|z-1|}: z \in S\right\}$ का उच्चतम (maximum) है, तब $\frac{4-z_0-\overline{z_0}}{z_0-\overline{z_0}+2i}$ का मुख्य कोणांक (principal argument) है
 - (A) $-\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$

Q.2 माना कि

$$M = \begin{bmatrix} \sin^4\theta & -1 - \sin^2\theta \\ 1 + \cos^2\theta & \cos^4\theta \end{bmatrix} = \alpha I + \beta M^{-1},$$

जहाँ $\alpha = \alpha(\theta)$ और $\beta = \beta(\theta)$ वास्तविक (real) संख्याएँ हैं, और *I* एक 2 x 2 तत्समक-आव्यूह (2 × 2 identity matrix) है | यदि

समुच्चय { $\alpha(\theta): \theta \in [0, 2\pi)$ } का निम्नतम (minimum) α^* है और

समुच्चय
$$\{eta(heta): heta \in [0, 2\pi)\}$$
 का निम्नतम (minimum) eta^* है,

तो $\alpha^* + \beta^*$ का मान है

(A)
$$-\frac{37}{16}$$
 (B) $-\frac{31}{16}$ (C) $-\frac{29}{16}$ (D) $-\frac{17}{16}$

Q.3	एक रेखा $y = mx + 1$ वृत्त $(x - 3)^2 + (y + 2)^2 = 25$ को बिन्दुओं P और Q पर प्रतिच्छेद करती है अगर रेखाखण्ड (line segment) PQ के मध्यबिंदु का x-निर्देशांक (x-coordinate) — $rac{3}{5}$ है, तब निम्नलिखित में से कौन सा एक विकल्प सही है ?		
	(A) $-3 \le m < -1$	(B) $2 \le m < 4$	
	(C) $4 \le m < 6$	(D) $6 \le m < 8$	
Q.4	क्षेत्र {(x, y): xy ≤ 8, 1 ≤ y ≤ x ² } का क्षेत्र		
	(A) $16 \log_e 2 - \frac{14}{3}$	(B) $8 \log_e 2 - \frac{14}{3}$	
	(C) $16 \log_e 2 - 6$	(D) $8 \log_e 2 - \frac{7}{3}$	

Q.5 माना कि x² - x - 1 = 0 के मूल (roots) α और β हैं, जहां α > β है | सभी धनात्मक पूर्णांको n के लिए निम्न को परिभाषित किया गया है

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \qquad n \ge 1,$$

$$b_1 = 1 \text{ and } b_n = a_{n-1} + a_{n+1}, n \ge 2.$$

तब निम्न में से कौन सा (से) विकल्प सही है (हैं) ?

(A) प्रत्येक
$$n \ge 1$$
 के लिए, $a_1 + a_2 + a_3 + \dots + a_n = a_{n+2} - 1$

(B)
$$\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$$

(C) प्रत्येक
$$n \ge 1$$
 के लिए, $b_n = \alpha^n + \beta^n$

(D)
$$\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$$

Q.6 माना कि

$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 और adj $M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$

जहाँ a और b वास्तविक संख्याएँ (real numbers) हैं | निम्न में से कौन सा (से) विकल्प सही है (हैं) ?

- (A) a + b = 3
- (B) $(\operatorname{adj} M)^{-1} + \operatorname{adj} M^{-1} = -M$
- (C) $\det(\operatorname{adj} M^2) = 81$
- (D) $\operatorname{Tr} \left[\begin{matrix} \alpha \\ \beta \\ \gamma \end{matrix} \right] = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\operatorname{Tr} \left[\begin{matrix} \alpha \\ -\beta \end{matrix} + \gamma \end{matrix} \right] = 3$
- Q.7 तीन थैले (bags) B₁, B₂ और B₃ हैं | B₁ थैले में 5 लाल (red) और 5 हरी (green) गेंदें हैं, B₂ में 3 लाल और 5 हरी गेंदें हैं, और B₃ में 5 लाल और 3 हरी गेंदें हैं| थैले B₁, B₂ और B₃ के चुने जाने की प्रायिकतायें क्रमशः 3/10, 3/10 और 4/10 हैं | एक थैला याद्रिच्छक (at random) लिया जाता है और एक गेंद उस थैले में से याद्रिच्छ्या चुनी जाती है | तब निम्न में से कौन सा (से) विकल्प सही है (हैं) ?
 - (A) चुनी गयी गेंद के हरे होने की प्रायिकता $\frac{3}{8}$ है, जब यह ज्ञात है कि चुना हुआ थैला B_3 है
 - (B) चुनी गयी गेंद के हरे होने की प्रायिकता $\frac{39}{80}$ है

 - (D) चुने हुए थैले के B_3 होने के साथ-साथ गेंद के हरे होने की प्रायिकता $\frac{3}{10}$ है

- Q.8 एक असमकोणीय त्रिभुज (non-right-angled triangle) ΔPQR के लिए, माना कि p, q, r क्रमशः कोण P, Q, R के सामने वाली भुजाओं की लम्बाइयाँ दर्शाती हैं R से खींची गयी माध्यिका (median) भुजा PQ से S पर मिलती है, P से खींचा गया अभिलम्ब (perpendicular) भुजा QR से E पर मिलता है, तथा RS और PE एक दुसरे को O पर काटती हैं | यदि $p = \sqrt{3}, q = 1$ और ΔPQR के परिवृत्त (circumcircle) की त्रिज्या (radius) 1 है, तब निम्न में से कौन सा (से) विकल्प सही है (हैं) ?
 - (A) RS की लम्बाई $=\frac{\sqrt{7}}{2}$
 - (B) $\triangle SOE$ का क्षेत्रफल (area) $=\frac{\sqrt{3}}{12}$
 - (C) OE की लम्बाई $=\frac{1}{6}$
 - (D) ΔPQR के अंतर्वृत (incircle) की त्रिज्या = $\frac{\sqrt{3}}{2} \left(2 \sqrt{3}\right)$
- Q.9 दीर्घवृतों (ellipses) {*E*₁, *E*₂, *E*₃, ... } और आयतों (rectangles) {*R*₁, *R*₂, *R*₃, ... } के संग्रहों को निम्न प्रकार से परिभाषित करें :
 - $E_1: \ \frac{x^2}{9} + \frac{y^2}{4} = 1;$
 - R1: अधिकतम क्षेत्र (largest area) का आयत, जिसकी भुजाएं अक्षों (axes) के समान्तर हैं, और जो E1 में अंतर्स्थित (inscribed) है;
 - E_n : अधिकतम क्षेत्र वाला दीर्घवृत $\frac{x^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ जो R_{n-1} , n > 1 में अंतर्स्थित है; R_n : अधिकतम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर हैं, और जो E_n , n > 1 में अंतर्स्थित है |

तब निम्न में से कौन सा (से) विकल्प सही है (हैं) ?

(A) E18 और E19 की उत्केंद्रतायें (eccentricities) समान **नहीं** हैं

(B) प्रत्येक पूर्णांक N के लिए,
$$\sum_{n=1}^{N} (R_n \text{ and } k \text{ and } r \text{ b)} < 24 \ \text{R}$$

(C)
$$E_9$$
 के नाभिलम्ब (latus rectum) की लम्बाई $\frac{1}{6}$ है

(D)
$$E_9$$
 में केंद्र से एक नाभि (focus) की दूरी $\frac{\sqrt{5}}{32}$ है

Q.10 माना कि $f: \mathbb{R} \to \mathbb{R}$ निम्न प्रकार से दिया है

$$f(x) = \begin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0; \\ x^2 - x + 1, & 0 \le x < 1; \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3}, & 1 \le x < 3; \\ (x - 2)\log_e(x - 2) - x + \frac{10}{3}, & x \ge 3. \end{cases}$$

तब निम्न में से कौन सा (से) विकल्प सही है (हैं) ?

- (A) f अंतराल $(-\infty, 0)$ में वर्धमान (increasing) है
- (B) f' का एक स्थानीय उच्चतम (local maximum) x = 1 पर है
- (C) f आच्छादक (onto) है
- (D) x = 1 Ur f' अवकलनीय **नहीं** (NOT differentiable) है
- Q.11 माना कि Γ एक वक्र y = y(x) है जो प्रथम चतुर्थांश (first quadrant) में है और माना कि बिंदु (1,0) उस पर स्थित है | माना कि Γ के बिंदु P पर खिंची गयी स्पर्श रेखा (tangent) y-अक्ष को Y_p पर प्रतिच्छेद (intersect) करती है | यदि Γ के प्रत्येक बिंदु P के लिए PY_p की लम्बाई 1 है, तब निम्न में से कौन सा (से) कथन सही है (हैं)?

(A)
$$y = \log_e \left(\frac{1 + \sqrt{1 - x^2}}{x}\right) - \sqrt{1 - x^2}$$

(B)
$$xy' + \sqrt{1 - x^2} = 0$$

(C)
$$y = -\log_e \left(\frac{1+\sqrt{1-x^2}}{x}\right) + \sqrt{1-x^2}$$

(D)
$$xy' - \sqrt{1 - x^2} = 0$$

Q.12 माना कि L_1 और L_2 क्रमशः निम्न रेखाएं हैं:

$$\vec{r} = \hat{i} + \lambda \left(-\hat{i} + 2\hat{j} + 2\hat{k} \right), \ \lambda \in \mathbb{R} \quad \text{और}$$
$$\vec{r} = \mu \left(2\hat{i} - \hat{j} + 2\hat{k} \right), \ \mu \in \mathbb{R}$$

यदि L3 एक रेखा है जो L1 और L2 दोनों के लम्बवत है और दोनों को काटती है , तब निम्नलिखित विकल्पों में से कौन सा (से) L3 को निरूपित करता (करते) है (हैं) ?

(A)
$$\vec{r} = \frac{2}{9} \left(4\hat{i} + \hat{j} + \hat{k} \right) + t \left(2\hat{i} + 2\hat{j} - \hat{k} \right), t \in \mathbb{R}$$

(B)
$$\vec{r} = \frac{2}{\alpha} \left(2\hat{i} - \hat{j} + 2\hat{k} \right) + t \left(2\hat{i} + 2\hat{j} - \hat{k} \right), t \in \mathbb{R}$$

(C)
$$\vec{r} = \frac{1}{3} (2\hat{i} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(D)
$$\vec{r} = t \left(2\hat{i} + 2\hat{j} - \hat{k} \right), t \in \mathbb{R}$$

खंड ३ (अधिकतम अंक: 18)			
• इस खंड में छ: (06) प्रस्न हैं। प्रत्येक प्रश्न का उत्तर एक संख्यात्मक मान (Numerical Value) है।			
• प्रत्येक प्रस्न के उत्तर के सही संख्यात्मक मान को माउज़ (mouse) और ऑन स्क्रीन (on-screen) वर्चुअल नुमेरिक कीपैड (virtual numeric keypad)			
के प्रयोग से उत्तर के लिए चिन्हित स्थान पर दर्ज करें। यदि संख्यात्मक मान में दो से अधिक दशमलव स्थान हैं, तो संख्यात्मक मान को दशमलव के दो स्थानों तक			
टूंकेट/राउंड−ऑफ (truncate/round-off) करें			
• प्रत्येक प्रश्न के उत्तर का मूल्यांकन निम्न योजना के अनुसार होगा:			
पूर्ण अंक : +3 यदि दर्ज किया गया संख्यात्मक मान (numerical value) ही सही उत्तर है।			
शून्य अंक : 0 अन्य सभी परिस्थितियों में।			

Q.13 माना कि $\omega \neq 1$ एकक का एक घनमूल (a cube root of unity) है| तब समुच्चय (set)

 $\{|a + b\omega + c\omega^2|^2 : a, b, c$ भिन्न अशून्य पूर्णांक (distinct non-zero integers) हैं $\}$

का निम्नतम (minimum) बराबर _____

Q.14 माना कि *AP*(*a*; *d*) एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद *a* तथा सर्वान्तर (common difference) *d* > 0 है| यदि

 $AP(1; 3) \cap AP(2; 5) \cap AP(3; 7) = AP(a; d)$

है, तब a + d बराबर _____

Q.15 माना कि *S* ऐसे 3 × 3 आव्यूहों (matrices) का प्रतिदर्श समिष्ट (sample space) है जिनकी प्रविष्टियाँ (entries) समुच्चय {0, 1} से हैं| माना कि घटनाएँ *E*₁ एवं *E*₂ निम्न हैं

$$E_1 = \{A \in S : \det A = 0\}$$
 और

$$E_2 = \left\{ A \in S \colon A \text{ ab y ab particular} an and a point of a po$$

यदि एक आव्यूह S से याद्टच्छिक (randomly) चुना जाता है तब सप्रतिबंध प्रायिकता (conditional probability) $P(E_1|E_2)$ बराबर _____

Q.16 माना कि बिंदु *B* रेखा 8x - 6y - 23 = 0 के सापेक्ष बिन्दु *A*(2, 3) का प्रतिबिम्ब (reflection) है | माना कि Γ_A और Γ_B क्रमशः त्रिज्याएँ 2 और 1 वाले वृत्त हैं जिनके केंद्र क्रमशः *A* और *B* हैं| माना कि वृत्तों Γ_A और Γ_B की एक ऐसी उभयनिष्ठ-स्पर्श (common tangent) रेखा *T* है, दोनों वृत्त जिसके एक ही तरफ हैं| यदि *C*, बिन्दुओं *A* और *B* से जाने वाली रेखा और *T* का प्रतिच्छेद बिंदु है, तब रेखाखण्ड (line segment) *AC* की लम्बाई है _____

Q.17 यदि

$$I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{(1 + e^{\sin x})(2 - \cos 2x)}$$

तब 27 I² बराबर _____

Q.18 तीन रेखाएं क्रमशः

 $\vec{r} = \lambda \hat{i}, \ \lambda \in \mathbb{R},$ $\vec{r} = \mu(\hat{i} + \hat{j}), \ \mu \in \mathbb{R}$ और $\vec{r} = \nu(\hat{i} + \hat{j} + \hat{k}), \ \nu \in \mathbb{R}$

द्वारा दी गयी हैं | माना कि रेखाएं समतल (plane) x + y + z = 1 को क्रमशः बिन्दुओं A, B और C पर काटती हैं | यदि त्रिभुज ABC का क्षेत्रफल Δ है तब $(6\Delta)^2$ का मान बराबर _____