LAACH

Test Booklet Code

This Booklet contains 24 pages.

Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **Side-1** and **Side-2** carefully with **blue/black** ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **RR**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.

Name of the Candidate (in Capitals) :		
Roll Number : in figures		
-		
Candidate's Signature :	Invigilator's Signature :	
Facsimile signature stamp of		
Centre Superintendent :		

LAACH/RR/Page 1

- 1. What is the role of NAD⁺ in cellular respiration?
 - (1) It is a nucleotide source for ATP synthesis.
 - (2) It functions as an electron carrier.
 - (3) It functions as an enzyme.
 - (4) It is the final electron acceptor for anaerobic respiration.
- 2. Oxygen is **not** produced during photosynthesis by
 - (1) Cycas
 - (2) Nostoc
 - (3) Green sulphur bacteria
 - (4) Chara
- **3.** Double fertilization is
 - (1) Fusion of two male gametes with one egg
 - (2) Fusion of one male gamete with two polar nuclei
 - (3) Fusion of two male gametes of a pollen tube with two different eggs
 - (4) Syngamy and triple fusion
- **4.** In which of the following forms is iron absorbed by plants?
 - (1) Free element
 - (2) Ferrous
 - (3) Ferric
 - (4) Both ferric and ferrous
- **5.** Which of the following elements is responsible for maintaining turgor in cells?
 - (1) Potassium
 - (2) Sodium
 - (3) Magnesium
 - (4) Calcium
- **6.** Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?
 - (1) Banana
 - (2) Yucca
 - (3) Hydrilla
 - (4) Viola
- 7. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
 - $(1) 196^{\circ}C$
 - $(2) 80^{\circ}C$
 - $(3) 120^{\circ}C$
 - $(4) 160^{\circ}C$

8. What type of ecological pyramid would be obtained with the following data?

Secondary consumer: 120 g

Primary consumer: 60 g

Primary producer: 10 g

- (1) Upright pyramid of numbers
- (2) Pyramid of energy
- (3) Inverted pyramid of biomass
- (4) Upright pyramid of biomass
- **9.** Natality refers to
 - (1) Number of individuals leaving the habitat
 - (2) Birth rate
 - (3) Death rate
 - (4) Number of individuals entering a habitat
- 10. World Ozone Day is celebrated on
 - (1) 16th September
 - (2) 21st April
 - (3) 5th June
 - (4) 22nd April
- 11. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen?
 - (1) Fe
 - (2) Cl
 - (3) Carbon
 - (4) Oxygen
- 12. Niche is
 - (1) the range of temperature that the organism needs to live
 - (2) the physical space where an organism lives
 - (3) all the biological factors in the organism's environment.
 - (4) the functional role played by the organism where it lives
- **13.** Which of the following is a secondary pollutant?
 - (1) SO_2
 - (2) CO_2
 - (3) CO
 - (4) O_3

- **14.** Which of the following statements is *correct*?
 - (1) Horsetails are gymnosperms.
 - (2) Selaginella is heterosporous, while Salvinia is homosporous.
 - (3) Ovules are not enclosed by ovary wall in gymnosperms.
 - (4) Stems are usually unbranched in both Cycas and Cedrus.
- **15.** Pneumatophores occur in
 - (1) Carnivorous plants
 - (2) Free-floating hydrophytes
 - (3) Halophytes
 - (4) Submerged hydrophytes
- **16.** Sweet potato is a modified
 - (1) Tap root
 - (2) Adventitious root
 - (3) Stem
 - (4) Rhizome
- **17.** Secondary xylem and phloem in dicot stem are produced by
 - (1) Phellogen
 - (2) Vascular cambium
 - (3) Apical meristems
 - (4) Axillary meristems
- **18.** Select the **wrong** statement :
 - (1) Pseudopodia are locomotory and feeding structures in Sporozoans.
 - (2) Mushrooms belong to Basidiomycetes.
 - (3) Cell wall is present in members of Fungi and Plantae.
 - (4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera.
- 19. Casparian strips occur in
 - (1) Cortex
 - (2) Pericycle
 - (3) Epidermis
 - (4) Endodermis
- **20.** Plants having little or no secondary growth are
 - (1) Conifers
 - (2) Deciduous angiosperms
 - (3) Grasses
 - (4) Cycads

- **21.** A 'new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to
 - (1) Lerma Rojo
 - (2) Sharbati Sonora
 - (3) Co-667
 - (4) Basmati
- **22.** Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?
 - (1) λ phage
 - (2) Ti plasmid
 - (3) Retrovirus
 - (4) pBR 322
- **23.** Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
 - (1) Biodegradation
 - (2) Biopiracy
 - (3) Bio-infringement
 - (4) Bioexploitation
- **24.** Select the *correct* match :
 - (1) T.H. Morgan Transduction
 - (2) $F_2 \times \text{Recessive parent}$ Dihybrid cross
 - (3) Ribozyme Nucleic acid
 - (4) G. Mendel Transformation
- **25.** The correct order of steps in Polymerase Chain Reaction (PCR) is
 - (1) Denaturation, Extension, Annealing
 - (2) Annealing, Extension, Denaturation
 - (3) Extension, Denaturation, Annealing
 - (4) Denaturation, Annealing, Extension
- **26.** In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
 - (1) Research Committee on Genetic Manipulation (RCGM)
 - (2) Council for Scientific and Industrial Research (CSIR)
 - (3) Indian Council of Medical Research (ICMR)
 - (4) Genetic Engineering Appraisal Committee (GEAC)

27.		stage during which separation of the paired ologous chromosomes begins is	35.	Win	_	pollen gr ango	ains a	re present in		
	(1)	Diakinesis		(2)		cas				
	(2)	Diplotene		(3)	-	ustard				
	(3)	Pachytene		(4)		nus				
	(4)	Zygotene								
28.	The	Golgi complex participates in	36.	Afte	er ka	aryogamy	follo	wed by meiosis, spores are		
	(1)	Respiration in bacteria		-	duce	ed exogen	ously	in		
	(2)	Formation of secretory vesicles		(1)	_	garicus				
	(3)	Fatty acid breakdown		(2)		ternaria				
	(4)	Activation of amino acid		(3) Neurospora						
29.	Ston	natal movement is <i>not</i> affected by		(4)	Sa	eccharom;	yces			
	(1)	O_2 concentration	37.	Whi	ch c	ne is <i>wro</i>	onglv	matched?		
	(2)	Light		(1)		emma cup		- Marchantia		
	(3)	Temperature		(2)		flagellate				
	(4)	CO_2 concentration		(3)		niflagella	-	•		
30.	Ston	nata in grass leaf are		(4)	Uı	nicellular	organ	ism – <i>Chlorella</i>		
	(1)	Rectangular								
	(2)	Kidney shaped	38.	<u>c</u>						
	(3)	Dumb-bell shaped				II and	select	the <i>correct</i> option given		
	(4)	Barrel shaped		belo						
31.	The	two functional groups characteristic of				$lumn\ I$		Column II		
	_	rs are		a.	He	erbarium	i.	It is a place having a		
	(1)	carbonyl and phosphate						collection of preserved		
	(2)	carbonyl and methyl						plants and animals.		
	(3)	hydroxyl and methyl		b.	Ke	ey	ii.	A list that enumerates		
	(4)	carbonyl and hydroxyl						methodically all the		
32.		ch of the following is not a product of light						species found in an area		
		tion of photosynthesis?						with brief description aiding identification.		
	(1)	NADH			ъ.			· ·		
	(2)	NADH		c.	M	useum	iii.	Is a place where dried and		
	(3) (4)	ATP						pressed plant specimens mounted on sheets are		
99		Oxygen						kept.		
33.		ch of the following is true for nucleolus? It takes part in spindle formation.		d.	Ca	talogue	iv.	A booklet containing a list		
	(1)	It is a membrane-bound structure.		ч.		warogue	.,,	of characters and their		
	(2)							alternates which are		
	(3)							helpful in identification of		
	(4)	It is a site for active ribosomal RNA synthesis.						various taxa.		
34.	Whic	ch among the following is <i>not</i> a prokaryote?			a	b	c	d		
	(1)	Nostoc		(1)	ii	iv	iii	i		
	(2)	Mycobacterium		(2)	iii	ii	i	iv		
	(3)	Saccharomyces		(3)	i	iv	iii	ii		
	(4)	Oscillatoria		(4)	iii	iv	i	ii		

39.	Which of the following flowers only once in its life-time?(1) Mango					46.	16. Match the items given in Column I with t Column II and select the <i>correct</i> option below:								
	(2)	Jackfruit						Colu	$mn\ I$				Colur	nn II	
	(3)	Bamboo species					a.	Tidal	l volum	e		i.	2500 -	- 3000 ı	nL
	(4)	Papaya					b.		ratory 1		_	ii.		- 1200 ı	
40.		ch of the following ched?	pa	irs is	wrongly		ν.	volur	ne						
	(1)	XO type sex determination	:	Grassl	hopper		c.	Expi: volur	ratory I ne	Reserve	;	iii.	500 –	550 mL	1
	(2)	ABO blood grouping	:	Co-dor	minance		d.	Resid	dual vol	ume		iv.	1000 -	- 1100 r	пL
	(3)	Starch synthesis in pe	ea :	Multip	ole alleles			a	b	\mathbf{c}		d			
	(4)	T.H. Morgan	:	Linkag	ge		(1)	i	iv	ii	:	iii			
41.	Offse	ets are produced by					(2)	iii	i	iv	:	ii			
	(1)	Parthenocarpy					(3)	iii	ii	i		iv			
	(2)	Mitotic divisions					(4)	iv	iii	ii		i			
	(3) (4)	Meiotic divisions Parthenogenesis													. •
42.	Whi	ch of the following herving pollen as fossils	_	oroved h	nelpful in	47.		esents	f the s the lu na, resp		ndit		ptions s in as		
	(1)	Oil content	•				(1)	Incre	eased	respir	atoi	ry	surfa	ce;	
	(2)	Cellulosic intine						Infla	mmatio	n of bro	oncl	hiole	es		
	(3)	Pollenkitt					(2)		eased n			rono	chioles;	Increa	sed
	(4)	Sporopollenin					(0)	_	ratory					_	
43.	Sele	ct the ${\it correct}$ statemen	nt:				(3)		mmatio ratory s			nch:	ioles;	Decrea	sed
	(1)	Spliceosomes take par	t in	translati	ion.		(4)	_	eased	respii		173 7	surfa	ce.	
	(2)	Punnett square was o scientist.	devel	oped by	a British	48.		Infla	mmatio items s	n of bro	oncł	niole	es	,	e in
	(3)	Franklin Stahl coined	the	term "lir	nkage".	101	Colu	ımn I	I and s						
	(4)	Transduction was disc	cover	ed by S.	Altman.		belo	w:							
44.		experimental proof			nservative			Colu					olumn .		
	(1)	ication of DNA was firs Plant	t sho	wn in a			a.	Tricu	ıspid va	lve i	i.			eft atri entricle	
	(2)	Bacterium					b.	Bicus	spid val	ve i	ii.	Bet	ween 1	right	
	(3) (4)	Fungus Virus											ntricle a monar	and y artery	V
45.		ct the <i>correct</i> match:					c.	Semi	lunar v	alve i	iii.		ween 1	_	
	(1)	Matthew Meselson and F. Stahl	_	Pisum	sativum								ium an itricle	d right	
	(2)	Alfred Hershey and	_	TMV				a	b	\mathbf{c}					
	(6)	Martha Chase		α. ·			(1)	i	ii	iii					
	(3)	Alec Jeffreys		Streptoc			(2)	i	iii	ii					
	(4)	Francois Jacob and		$egin{aligned} pneumo. \ Lac & ope \end{aligned}$			(3)	iii	i	ii					
	(4)	Jacques Monod	_	<i>∟</i> ac opei	1011		(4)	ii	i	iii					

54. Ciliates differ from all other protozoans in 49. All of the following are part of an operon except (1) using pseudopodia for capturing prey **(1)** an enhancer (2)having a contractile vacuole for removing (2)structural genes excess water (3)an operator (3)using flagella for locomotion (4) a promoter (4) having two types of nuclei 50. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding 55. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive sequence of the transcribed mRNA? system. ACCUAUGCGAU (1) Aves (2)UGGTUTCGCAT (2)Reptilia **AGGUAUCGCAU** (3)(3)**Amphibia** (4)UCCAUAGCGUA (4) Osteichthyes According to Hugo de Vries, the mechanism of 51. 56. Which of the following organisms are known as evolution is chief producers in the oceans? Phenotypic variations (1) (1) Cyanobacteria (2)Saltation (2)**Diatoms** Multiple step mutations (3)(3)Dinoflagellates Minor mutations (4)Euglenoids **52.** Match the items given in Column I with those in Column II and select the correct option given **57**. Which of the following features is used to identify below: a male cockroach from a female cockroach? Column I Column II Forewings with darker tegmina (1) Proliferative Phase i. Breakdown of a. (2)Presence of caudal styles endometrial (3)Presence of a boat shaped sternum on the lining 9th abdominal segment Secretory Phase ii. Follicular Phase b. (4) Presence of anal cerci iii. Luteal Phase Menstruation c. **58.** Which of the following animals does *not* undergo b a \mathbf{c} metamorphosis? (1) ii i iii **(1)** Moth (2)i iii ii (2)Tunicate (3)iii ii i Earthworm (3)(4) iii (4)Starfish A woman has an X-linked condition on one of her 53. Which one of these animals isnotX chromosomes. This chromosome can homeotherm? inherited by (1) Camelus(1) Only grandchildren (2)Chelone(2)Only sons

Only daughters

Both sons and daughters

(3)

(4)

(3)

Macropus

Psittacula

60. The transparent lens in the human eye is held in 64. Match the items given in Column I with those in its place by Column II and select the *correct* option given below: (1) smooth muscles attached to the iris (2)ligaments attached to the iris $Column\ I$ Column II (3)ligaments attached to the ciliary body Glycosuria i. Accumulation of uric a. (4) smooth muscles attached to the ciliary body acid in joints Gout b. ii. Mass of crystallised Which of the following structures or regions is 61. salts within the kidney *incorrectly* paired with its function? Renal calculi iii. Inflammation in c. (1) **Hypothalamus** production of glomeruli releasing hormones d. Glomerular iv. Presence of glucose in and regulation of nephritis urine temperature, hunger and thirst. d a h c (2)Limbic system consists of fibre (1) ii iii i iv tracts that i (2)ii iii iv interconnect different regions of iii ii i (3)iv brain; controls i (4)iv ii iii movement. (3)Medulla oblongata: controls respiration Match the items given in Column I with those in **65.** and cardiovascular Column II and select the correct option given reflexes. below: band of fibers (4)Corpus callosum Column I Column II connecting left and (Function) (Part of Excretory right cerebral System) hemispheres. Ultrafiltration Henle's loop a. 62. Which of the following hormones can play a significant role in osteoporosis? Concentration Ureter h. of urine (1) Estrogen and Parathyroid hormone (2)Progesterone and Aldosterone Transport of iii. Urinary bladder c. urine (3)Aldosterone and Prolactin d. Storage of urine iv. Malpighian (4) Parathyroid hormone and Prolactin corpuscle v. Proximal 63. Which of the following is an amino acid derived convoluted tubule hormone? d a b \mathbf{c} (1) Estradiol (1) iv i ii \mathbf{v} (2)Ecdysone (2)iv ii iii (3)Epinephrine (3)iv ii iii

Estriol

(4)

(4)

iv

i

iii

- **66.** Which of the following gastric cells indirectly help in erythropoiesis?
 - (1) Goblet cells
 - (2) Mucous cells
 - (3) Chief cells
 - (4) Parietal cells
- 67. Match the items given in Column I with those in Column II and select the *correct* option given below:

	Colu	$mn\ I$		$Column \ II$
a.	Fibri	nogen	i.	Osmotic balance
b.	Globulin		ii.	Blood clotting
c.	Albumin		iii.	Defence mechanism
	a	b	c	
(1)	i	iii	ii	
(2)	i	ii	iii	
(3)	iii	ii	i	
(4)	ii	iii	i	

- **68.** Calcium is important in skeletal muscle contraction because it
 - (1) detaches the myosin head from the actin filament.
 - (2) activates the myosin ATPase by binding to it.
 - (3) binds to troponin to remove the masking of active sites on actin for myosin.
 - (4) prevents the formation of bonds between the myosin cross bridges and the actin filament.
- **69.** Which of the following is an occupational respiratory disorder?
 - (1) Botulism
 - (2) Silicosis
 - (3) Anthracis
 - (4) Emphysema

- **70.** Which of these statements is *incorrect*?
 - (1) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
 - (2) Glycolysis occurs in cytosol.
 - (3) Enzymes of TCA cycle are present in mitochondrial matrix.
 - (4) Oxidative phosphorylation takes place in outer mitochondrial membrane.
- **71.** Nissl bodies are mainly composed of
 - (1) Nucleic acids and SER
 - (2) DNA and RNA
 - (3) Proteins and lipids
 - (4) Free ribosomes and RER
- **72.** Select the *incorrect* match :
 - (1) Submetacentric L-shaped chromososmes Chromosomes
 - (2) Allosomes Sex chromosomes
 - (3) Lampbrush Diplotene bivalents chromosomes
 - (4) Polytene Oocytes of amphibians chromosomes
- 73. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
 - (1) Plastidome
 - (2) Polyhedral bodies
 - (3) Polysome
 - (4) Nucleosome
- **74.** Which of the following events does **not** occur in rough endoplasmic reticulum?
 - (1) Cleavage of signal peptide
 - (2) Protein glycosylation
 - (3) Protein folding
 - (4) Phospholipid synthesis
- **75.** Which of the following terms describe human dentition?
 - (1) Pleurodont, Monophyodont, Homodont
 - (2) Thecodont, Diphyodont, Heterodont
 - (3) Thecodont, Diphyodont, Homodont
 - (4) Pleurodont, Diphyodont, Heterodont

- **76.** In a growing population of a country,
 - (1) reproductive and pre-reproductive individuals are equal in number.
 - (2) reproductive individuals are less than the post-reproductive individuals.
 - (3) pre-reproductive individuals are more than the reproductive individuals.
 - (4) pre-reproductive individuals are less than the reproductive individuals.
- 77. Match the items given in Column I with those in Column II and select the *correct* option given below:

 $Column\ I$

a.

Column II

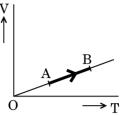
- Eutrophication
- i. UV-B radiation
- b. Sanitary landfill
- ii. Deforestation
- c. Snow blindness
- iii. Nutrient

enrichment

- d. Jhum cultivation iv. Waste disposal
 - b c
- d

ii

- (1) iii iv i ii
- (2) i iii iv
- (3) ii i iii iv
- (4) i ii iv iii
- **78.** Which part of poppy plant is used to obtain the drug "Smack"?
 - (1) Roots


a

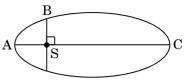
- (2) Latex
- (3) Flowers
- (4) Leaves
- **79.** Which one of the following population interactions is widely used in medical science for the production of antibiotics?
 - (1) Parasitism
 - (2) Mutualism
 - (3) Commensalism
 - (4) Amensalism
- **80.** All of the following are included in 'Ex-situ conservation' *except*
 - (1) Botanical gardens
 - (2) Sacred groves
 - (3) Wildlife safari parks
 - (4) Seed banks

- **81.** Hormones secreted by the placenta to maintain pregnancy are
 - (1) hCG, hPL, progestogens, estrogens
 - (2) hCG, hPL, estrogens, relaxin, oxytocin
 - (3) hCG, hPL, progestogens, prolactin
 - (4) hCG, progestogens, estrogens, glucocorticoids
- **82.** The contraceptive 'SAHELI'
 - (1) is an IUD.
 - (2) increases the concentration of estrogen and prevents ovulation in females.
 - (3) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
 - (4) is a post-coital contraceptive.
- **83.** The difference between spermiogenesis and spermiation is
 - (1) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
 - (2) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
 - (3) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
 - (4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into the cavity of seminiferous tubules.
- **84.** The amnion of mammalian embryo is derived from
 - (1) mesoderm and trophoblast
 - (2) endoderm and mesoderm
 - (3) ectoderm and mesoderm
 - (4) ectoderm and endoderm

- **85.** The similarity of bone structure in the forelimbs of many vertebrates is an example of
 - (1) Convergent evolution
 - (2) Analogy
 - (3) Homology
 - (4) Adaptive radiation
- **86.** In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
 - (1) Ringworm disease
 - (2) Ascariasis
 - (3) Elephantiasis
 - (4) Amoebiasis
- **87.** Which of the following is *not* an autoimmune disease?
 - (1) Alzheimer's disease
 - (2) Rheumatoid arthritis
 - (3) Psoriasis
 - (4) Vitiligo
- **88.** Which of the following characteristics represent 'Inheritance of blood groups' in humans?
 - a. Dominance
 - b. Co-dominance
 - c. Multiple allele
 - d. Incomplete dominance
 - e. Polygenic inheritance
 - (1) b, d and e
 - (2) a, b and c
 - (3) b, c and e
 - (4) a, c and e
- **89.** Among the following sets of examples for divergent evolution, select the *incorrect* option:
 - (1) Brain of bat, man and cheetah
 - (2) Heart of bat, man and cheetah
 - (3) Forelimbs of man, bat and cheetah
 - (4) Eye of octopus, bat and man
- **90.** Conversion of milk to curd improves it nutritional value by increasing the amount of
 - (1) Vitamin B₁₂
 - (2) Vitamin A
 - (3) Vitamin D
 - (4) Vitamin E

11. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

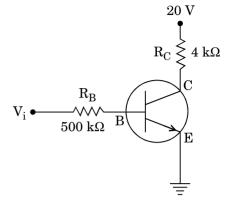
- $(1) \quad \frac{1}{3}$
- (2) $\frac{2}{3}$
- $(3) \quad \frac{2}{5}$
- $(4) \quad \frac{2}{7}$
- **92.** The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 12·5 cm
 - (2) 8 cm
 - (3) 13·2 cm
 - (4) 16 cm
- **93.** The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 6.25%
 - (2) 20%
 - (3) 26.8%
 - (4) 12.5%
- **94.** At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?

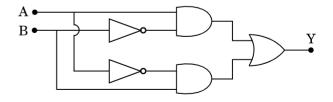

(Given:

Mass of oxygen molecule (m) = 2.76×10^{-26} kg Boltzmann's constant $k_B = 1.38 \times 10^{-23}$ J K⁻¹)

- (1) $5.016 \times 10^4 \text{ K}$
- (2) $8.360 \times 10^4 \text{ K}$
- (3) $2.508 \times 10^4 \text{ K}$
- $(4) \quad \ 1{\cdot}254 \times 10^4 \ K$

- 95. Unpolarised light is incident from air on a plane surface of a material of refractive index 'μ'. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?
 - $(1) \quad i = \sin^{-1} \left(\frac{1}{\mu}\right)$
 - (2) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
 - (3) Reflected light is polarised with its electric vector parallel to the plane of incidence
 - $(4) \quad i = tan^{-1} \left(\frac{1}{\mu}\right)$
- 96. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is $0\cdot20^{\circ}$. To increase the fringe angular width to $0\cdot21^{\circ}$ (with same λ and D) the separation between the slits needs to be changed to
 - (1) 2·1 mm
 - (2) 1·9 mm
 - (3) 1·8 mm
 - (4) 1·7 mm
- **97.** An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) large focal length and large diameter
 - (2) large focal length and small diameter
 - (3) small focal length and large diameter
 - (4) small focal length and small diameter

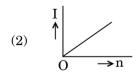

. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

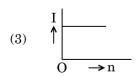

- $(1) \quad K_{B} < K_{A} < K_{C}$
- (2) $K_A > K_B > K_C$
- $(3) K_A < K_B < K_C$
- $(4) \quad K_{B} > K_{A} > K_{C}$
- **99.** A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t:(K_t+K_r)$ for the sphere is
 - (1) 10:7
 - (2) 5:7
 - (3) 7:10
 - (4) 2:5
- **100.** If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is **not** correct?
 - (1) Time period of a simple pendulum on the Earth would decrease.
 - (2) Walking on the ground would become more difficult.
 - (3) Raindrops will fall faster.
 - (4) 'g' on the Earth will not change.
- 101. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - (1) Rotational kinetic energy
 - (2) Moment of inertia
 - (3) Angular velocity
 - (4) Angular momentum

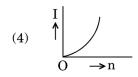
- 102. A metallic rod of mass per unit length 106. In the circuit shown in the figure, the input 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
 - 14.76 A (1)
 - (2)5.98 A
 - 7·14 A (3)
 - 11.32 A (4)
- 103. An inductor 20 mH, a capacitor 100 µF and a resistor 50 Ω are connected in series across a source of emf, $V = 10 \sin 314 t$. The power loss in the circuit is
 - (1) 2.74 W
 - (2)0.43 W
 - (3)0.79 W
 - (4)1·13 W
- 104. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The required to do this comes from
 - the lattice structure of the material of the rod
 - (2)the magnetic field
 - (3)the current source
 - the induced electric field due to the (4) changing magnetic field
- **105.** Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - (1) 250Ω
 - (2) 25Ω
 - (3) 40Ω
 - (4) 500Ω

voltage V_i is 20 V, $V_{RE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

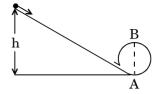



- (1) $I_B = 20 \mu A$, $I_C = 5 mA$, $\beta = 250$
- (2) $I_B = 25 \mu A$, $I_C = 5 mA$, $\beta = 200$
- (3) $I_B = 40 \mu A$, $I_C = 10 \text{ mA}$, $\beta = 250$
- (4) $I_B = 40 \mu A$, $I_C = 5 mA$, $\beta = 125$
- **107.** In a p-n junction diode, change in temperature due to heating
 - (1) does not affect resistance of p-n junction
 - (2)affects only forward resistance
 - affects only reverse resistance (3)
 - affects the overall V I characteristics of (4) p-n junction
- **108.** In the combination of the following gates the output Y can be written in terms of inputs A and B as

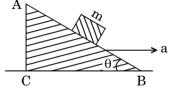



- $\overline{A \cdot B} + A \cdot B$ (1)
- $A \cdot \overline{B} + \overline{A} \cdot B$ (2)
- (3)A.B
- (4)A + B

- 109. A carbon resistor of (47 ± 4.7) k Ω is to be marked 112. A body initially at rest and sliding along a forof different colours with rings identification. The colour code sequence will be
 - (1) Yellow - Green - Violet - Gold
 - (2)Yellow - Violet - Orange - Silver
 - (3)Violet - Yellow - Orange - Silver
 - Green Orange Violet Gold (4)
- 110. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - **(1)** 20
 - (2)11
 - (3)10
 - 9 (4)
- 111. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?



frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to


- (1)
- (2)D
- (3)
- 113. Three objects, A: (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - (1) $W_R > W_{\Delta} > W_C$
 - (2) $W_{\Delta} > W_{B} > W_{C}$
 - $(3) \quad W_C > W_B > W_A$
 - $W_{\Delta} > W_{C} > W_{R}$
- 114. Which one of the following statements is incorrect?
 - Frictional force opposes the relative motion.
 - Limiting value of static friction is directly proportional to normal reaction.
 - (3)Rolling friction is smaller than sliding friction.
 - Coefficient (4) sliding friction has dimensions of length.
- 115. A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1) 0.8
 - (2)0.25
 - (3)0.5
 - (4)0.4

- 116. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 350 m/s
 - (2) 339 m/s
 - (3) 330 m/s
 - (4) 300 m/s
- **117.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1) proportional to the square root of the distance between the plates.
 - (2) linearly proportional to the distance between the plates.
 - (3) independent of the distance between the plates.
 - (4) inversely proportional to the distance between the plates.
- 118. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean position. The time period of oscillation is
 - (1) 2 s
 - (2) πs
 - (3) $2\pi s$
 - (4) 1 s
- 119. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1) 10 times greater
 - (2) 5 times greater
 - (3) smaller
 - (4) equal

- - $(1) \quad \lambda_0\,t$
 - $(2) \quad \lambda_0 \left(1 + \frac{e E_0}{m V_0} t \right)$
 - $(3) \qquad \frac{\lambda_0}{\left(1+\frac{eE_0}{mV_0}t\right)}$
 - (4) λ_0
- 121. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 30
 - (2) 10
 - (3) 20
 - (4) 15
- 122. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is
 - (1) 4:1
 - (2) 1:4
 - (3) 1:2
 - (4) 2:1
- **123.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 2:-1
 - (2) 1:-1
 - (3) 1:1
 - (4) 1:-2

- 124. An em wave is propagating in a medium with a velocity $\vec{V} = V\, \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
 - (1) y direction
 - (2) + z direction
 - (3) z direction
 - (4) x direction
- 125. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) 30°
 - (2) 45°
 - (3) 60°
 - (4) zero
- **126.** The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) 1.389 H
 - (2) 138·88 H
 - (3) 0·138 H
 - (4) 13·89 H
- 127. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 30 cm towards the mirror
 - (2) 36 cm away from the mirror
 - (3) 30 cm away from the mirror
 - (4) 36 cm towards the mirror

- 128. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \overrightarrow{E} . Due to the force q \overrightarrow{E} , its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1) 1 m/s, 3.5 m/s
 - (2) 1 m/s, 3 m/s
 - (3) 2 m/s, 4 m/s
 - (4) 1.5 m/s, 3 m/s
- 129. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

- (1) $a = g \cos \theta$
- (2) $a = \frac{g}{\sin \theta}$
- (3) $a = \frac{g}{\csc \theta}$
- (4) $a = g \tan \theta$
- 130. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of 0.004 cm, the correct diameter of the ball is
 - (1) 0.053 cm
 - (2) 0.525 cm
 - (3) 0.521 cm
 - $(4) \quad 0.529 \text{ cm}$
- **131.** The moment of the force, $\overrightarrow{F} = 4 \overrightarrow{i} + 5 \overrightarrow{j} 6 \cancel{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by
 - $(1) -7\hat{i} -8\hat{j} -4\hat{k}$
 - $(2) \quad -4 \, \hat{i} \, \, \hat{j} \, \, 8 \, \hat{k}$
 - $(3) 8\hat{i} 4\hat{j} 7\hat{k}$
 - $(4) \quad -7\, \mathring{i} \, -4\, \mathring{j} \, -8\, \mathring{k}$

- 132. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is
 - (1) $\frac{256}{81}$
 - (2) $\frac{4}{3}$
 - $(3) \quad \frac{3}{4}$
 - $(4) \frac{81}{256}$
- 133. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?
 - (1) 4 F
 - (2) 6 F
 - (3) 9 F
 - (4) F
- 134. A sample of 0.1 g of water at 100° C and normal pressure $(1.013 \times 10^{5} \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100° C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 42·2 J
 - $(2) \quad 208{\cdot}7~J$
 - (3) 104·3 J
 - (4) 84·5 J
- **135.** A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
 - (1) r^5
 - (2) r^2
 - (3) r^3
 - (4) r^4

- **136.** Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
 - a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
 - b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
 - c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
 - d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH

pH of which one of them will be equal to 1?

- (1) d
- (2) a
- (3) b
- (4) c
- **137.** On which of the following properties does the coagulating power of an ion depend?
 - (1) Both magnitude and sign of the charge on the ion
 - (2) Size of the ion alone
 - (3) The magnitude of the charge on the ion alone
 - (4) The sign of charge on the ion alone
- 138. The solubility of $BaSO_4$ in water is $2\cdot42\times10^{-3}~{\rm gL}^{-1}$ at 298 K. The value of its solubility product $(K_{\rm sp})$ will be

(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)

- (1) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
- (2) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
- (3) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
- (4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
- 139. Given van der Waals constant for NH_3 , H_2 , O_2 and CO_2 are respectively 4·17, 0·244, 1·36 and 3·59, which one of the following gases is most easily liquefied?
 - (1) O₂
 - (2) H_2
 - (3) NH₃
 - (4) CO_2

140. In the reaction

$$\begin{array}{c} \text{OH} & \text{O}^-\text{Na}^+ \\ \hline \bigcirc & + \text{CHCl}_3 + \text{NaOH} \end{array} \longrightarrow \begin{array}{c} \text{O}^-\text{Na}^+ \\ \hline \bigcirc & \text{CHO} \\ \end{array}$$

the electrophile involved is

- (1) dichloromethyl anion $(CHCl_2)$
- (2) formyl cation (CHO)
- (3) dichloromethyl cation (CHCl₂)
- (4) dichlorocarbene (:CCl₂)
- **141.** Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) more extensive association of carboxylic acid via van der Waals force of attraction
 - (2) formation of carboxylate ion
 - (3) formation of intramolecular H-bonding
 - (4) formation of intermolecular H-bonding
- 142. Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

(1) CH – CH
$$_3$$
 and I $_2$ OH

(3)
$$H_3C - CH_2 - OH \text{ and } I_2$$

$$(4) \qquad \text{CH}_{3} \longrightarrow \begin{array}{c} \text{CH}_{3} \\ \text{OH and I}_{2} \end{array}$$

- 143. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is 1s² 2s² 2p³, the simplest formula for this compound is
 - (1) Mg_2X
 - $(2) \quad \mathrm{MgX}_2$
 - (3) Mg_2X_3
 - $(4) Mg_3X_2$
- 144. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is
 - $(1) \qquad \frac{3\sqrt{3}}{4\sqrt{2}}$
 - $(2) \qquad \frac{4\sqrt{3}}{3\sqrt{2}}$
 - $(3) \qquad \frac{\sqrt{3}}{\sqrt{2}}$
 - $(4) \frac{1}{2}$
- **145.** Which one is a *wrong* statement?
 - (1) The electronic configuration of N atom is

$$\begin{array}{c|c} \mathbf{1}\mathbf{s}^2 & \mathbf{2}\mathbf{s}^2 & \mathbf{2}\mathbf{p}_{\mathbf{x}}^1 \ \mathbf{2}\mathbf{p}_{\mathbf{y}}^1 \ \mathbf{2}\mathbf{p}_{\mathbf{z}}^1 \\ \hline \uparrow \downarrow & \boxed{\uparrow} & \boxed{\uparrow} & \boxed{\downarrow} \end{array}$$

- (2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
- (3) Total orbital angular momentum of electron in 's' orbital is equal to zero.
- (4) The value of m for d_{z^2} is zero.
- **146.** Consider the following species:

Which one of these will have the highest bond order?

- (1) CN^+
- (2) CN
- (3) NO
- (4) CN

- 147. In the structure of ClF_3 , the number of lone pairs 153. For the redox reaction of electrons on central atom 'Cl' is
 - (1) four
 - (2)two
 - (3)one
 - (4)three
- 148. The correct order of atomic radii in group 13 elements is
 - (1) B < Ga < Al < Tl < In
 - (2)B < Al < Ga < In < Tl
 - B < Al < In < Ga < Tl(3)
 - B < Ga < Al < In < Tl(4)
- 149. The correct order of N-compounds in its decreasing order of oxidation states is
 - HNO₃, NH₄Cl, NO, N₂
 - (2)HNO₃, NO, NH₄Cl, N₂
 - HNO₃, NO, N₂, NH₄Cl (3)
 - NH₄Cl, N₂, NO, HNO₃ (4)
- **150.** Which one of the following elements is unable to form MF_e^{3-} ion?
 - В (1)
 - (2)Al
 - (3)Ga
 - (4)In
- **151.** Which of the following statements is **not** true for halogens?
 - All but fluorine show positive oxidation (1) states.
 - (2)All are oxidizing agents.
 - (3)All form monobasic oxyacids.
 - Chlorine has the highest electron-gain 157. (4) enthalpy.
- 152. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
 - (1) Mg
 - (2)Zn
 - (3)Fe
 - (4) Cu

$$\mathrm{MnO_4^-} + \mathrm{C_2O_4^{2-}} + \mathrm{H^+} {\longrightarrow} \mathrm{Mn^{2+}} + \mathrm{CO_2} + \mathrm{H_2O}$$

the correct coefficients of the reactants for the balanced equation are

	MnO_4^-	$C_2^{O_4^{Z-}}$	$\mathrm{H}^{\scriptscriptstyleT}$
(1)	2	16	5

- (2)2 5 16
- (3)16 5 2 2 (4)5 16
- **154.** Which one of the following conditions will favour maximum formation of the product in the reaction.

$$A_2(g) + B_2(g) \rightleftharpoons X_2(g) \quad \Delta_r H = -X kJ$$
?

- **(1)** High temperature and high pressure
- (2)Low temperature and low pressure
- (3)Low temperature and high pressure
- (4)High temperature and low pressure
- **155.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) electric field present between the gas molecules
 - (2)volume of the gas molecules
 - density of the gas molecules (3)
 - forces of attraction between the (4) molecules
- **156.** When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is tripled
 - (2)is doubled
 - (3)is halved
 - remains unchanged
- The bond dissociation energies of X2, Y2 and XY are in the ratio of 1:0.5:1. ΔH for the formation of XY is -200 kJ mol⁻¹. The bond dissociation energy of X₂ will be
 - 800 kJ mol^{-1} (1)
 - 100 kJ mol^{-1} (2)
 - 200 kJ mol^{-1}
 - 400 kJ mol^{-1}

158. Match the metal ions given in Column I with the 163. The correct difference between firstspin magnetic moments of the ions given in Column II and assign the *correct* code:

	Coli	ımn I		$Column \; II$	
a.	Co ³⁻	+	i.	$\sqrt{8}$ B.M.	
b.	Cr^{3+}	+	ii.	$\sqrt{35}$ B.M.	
c.	Fe^{3+}	٠	iii.	$\sqrt{3}$ B.M.	
d.	Ni ²⁺	+	iv.	$\sqrt{24}$ B.M.	
			v.	$\sqrt{15}$ B.M.	
	a	b	c	d	
(1)	iv	i	ii	iii	
(2)	i	ii	iii	iv	
(3)	iv	v	ii	i	
(4)	iii	77	i	ii	

- 159. Which one of the following ions exhibits d-d transition and paramagnetism as well?
 - (1) MnO_4
 - $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ (2)
 - $\operatorname{CrO}_4^{2-}$ (3)
 - MnO_4^{2-} (4)
- 160. The type of isomerism shown by the complex [CoCl₂(en)₂] is
 - (1) Ionization isomerism
 - (2)Coordination isomerism
 - (3)Geometrical isomerism
 - (4)Linkage isomerism
- **161.** The geometry and magnetic behaviour of the complex [Ni(CO)₄] are
 - square planar geometry and paramagnetic
 - (2)tetrahedral geometry and diamagnetic
 - (3)square planar geometry and diamagnetic
 - (4) tetrahedral geometry and paramagnetic
- **162.** Iron carbonyl, $Fe(CO)_5$ is
 - (1) trinuclear
 - (2)mononuclear
 - tetranuclear (3)
 - (4)dinuclear

- second-order reactions is that
 - a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (2)the half-life of a first-order reaction does not depend on [A]₀; the half-life second-order reaction does depend on [A]₀
 - the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - the rate of a first-order reaction does (4) depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- 164. Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) BeH₂ < BaH₂ < CaH₂
 - (2) CaH₂ < BeH₂ < BaH₂
 - (3) BeH₂ < CaH₂ < BaH₂
 - (4) $BaH_2 < BeH_2 < CaH_2$
- 165. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

$$BrO_4^- \xrightarrow{1.82 \text{ V}} BrO_3^- \xrightarrow{1.5 \text{ V}} HBrO$$

$$Br^- \xleftarrow{1.0652 \text{ V}} Br_2 \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is

- (1) Br_{2}
- (2)BrO₄
- (3) BrO_{2}^{-}
- HBrO (4)
- **166.** In which case is the number of molecules of water maximum?
 - 0.00224 L of water vapours at 1 atm and 273 K
 - 0.18 g of water (2)
 - 18 mL of water (3)
 - 10^{-3} mol of water (4)

167. Which of the following molecules represents the 170. Identify the major products P, Q and R in the order of hybridisation sp², sp², sp, sp from left to right atoms?

(1)
$$CH_2 = CH - CH = CH_2$$

(2)
$$CH_2 = CH - C \equiv CH$$

(3)
$$HC \equiv C - C \equiv CH$$

(4)
$$CH_3 - CH = CH - CH_3$$

168. Which of the following carbocations is expected to be most stable?

$$(1) \qquad \underset{\mathbf{Y}}{\overset{\mathbf{NO}_{2}}{\bigoplus}}$$

$$(2) \qquad \begin{array}{c} NO_2 \\ \\ \hline \\ Y & H \end{array}$$

$$(3) \qquad \bigvee_{Y \quad H}^{NO_2}$$

$$(4) \qquad \stackrel{\text{NO}_2}{Y}$$

169. Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl)

(1)
$$-NH_2 > -OR > -F$$

$$(2) \quad -NR_2 < -OR < -F$$

$$(3) - NH_2 < -OR < -F$$

(4)
$$-NR_2 > -OR > -F$$

following sequence of reactions:

$$\begin{array}{c} \text{Anhydrous} \\ & \text{AlCl}_3 \\ \\ & \text{P} \xrightarrow{\text{(i) O}_2} \\ & \text{(ii) H}_3\text{O}^+\!/\!\Delta} \\ \end{array} \Rightarrow \text{Q} + \text{R}$$

P Q R

$$(1) \ \ \, \bigcup^{\mathrm{CH}(\mathrm{CH}_3)_2} \ \ \, \bigcup^{\mathrm{OH}} \ \ \, \, \, \mathrm{CH_3CH(\mathrm{OH})CH_3}$$

$$(2) \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

(3)
$$\begin{array}{c|c} \mathrm{CH_2CH_2CH_3} & \mathrm{CHO} \\ \\ \end{array}$$
 ,
$$\begin{array}{c|c} \mathrm{CH_3CH_2-OH} \end{array}$$

$$(4) \quad \overbrace{\hspace{1cm}}^{\text{CH}(\text{CH}_3)_2} \quad \overbrace{\hspace{1cm}}^{\text{OH}}, \quad \text{CH}_3 - \text{CO} - \text{CH}_3$$

- 171. Which of the following compounds can form a zwitterion?
 - (1) Benzoic acid
 - (2)Acetanilide
 - Aniline (3)
 - (4)Glycine

- 172. The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - $(1)\quad \mathrm{C_2H_5Cl},\,\mathrm{C_2H_6},\,\mathrm{C_2H_5OH}$
 - (2) C_2H_5OH , C_2H_5Cl , C_2H_5ONa
 - $(3)\quad \mathrm{C_2H_5OH},\,\mathrm{C_2H_6},\,\mathrm{C_2H_5Cl}$
 - (4) C₂H₅OH, C₂H₅ONa, C₂H₅Cl
- 173. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1) $CH_3 CH_3$
 - (2) $CH_2 = CH_2$
 - (3) $CH \equiv CH$
 - (4) CH₄
- **174.** The compound C_7H_8 undergoes the following reactions:

$$C_7H_8 \xrightarrow{3 Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

The product 'C' is

- (1) 3-bromo-2,4,6-trichlorotoluene
- (2) *o*-bromotoluene
- (3) m-bromotoluene
- (4) *p*-bromotoluene
- **175.** Which oxide of nitrogen is **not** a common pollutant introduced into the atmosphere both due to natural and human activity?
 - (1) N_2O
 - (2) NO_2
 - $(3) \quad N_2O_5$
 - (4) NO

- **176.** Regarding cross-linked or network polymers, which of the following statements is *incorrect*?
 - (1) Examples are bakelite and melamine.
 - (2) They are formed from bi- and tri-functional monomers.
 - (3) They contain covalent bonds between various linear polymer chains.
 - (4) They contain strong covalent bonds in their polymer chains.
- **177.** Which of the following oxides is most acidic in nature?
 - (1) BaO
 - (2) BeO
 - (3) MgO
 - (4) CaO
- **178.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In absence of substituents nitro group always goes to m-position.
 - (2) In electrophilic substitution reactions amino group is meta directive.
 - (3) In spite of substituents nitro group always goes to only m-position.
 - (4) In acidic (strong) medium aniline is present as anilinium ion.
- 179. A mixture of $2\cdot 3$ g formic acid and $4\cdot 5$ g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1) 2.8
 - (2) 3.0
 - (3) 1.4
 - (4) 4·4
- **180.** The difference between amylose and amylopectin is
 - (1) Amylopectin have 1 \rightarrow 4 α -linkage and 1 \rightarrow 6 β -linkage
 - (2) Amylose have $1 \rightarrow 4$ $\alpha\text{-linkage}$ and $1 \rightarrow 6 \; \beta\text{-linkage}$
 - (3) Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6$ α -linkage
 - (4) Amylose is made up of glucose and galactose

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions:

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.